在编译自编码器时出现错误?

这是我的自编码器模型:

input_img = Input(shape=(1, 32, 32))x = Convolution2D(16, 3, 3, activation='relu', border_mode='same')(input_img)x = MaxPooling2D((2, 2), border_mode='same')(x)x = Convolution2D(8, 3, 3, activation='relu', border_mode='same')(x)x = MaxPooling2D((2, 2), border_mode='same')(x)x = Convolution2D(8, 2, 2, activation='relu', border_mode='same')(x)encoded = MaxPooling2D((2, 2), border_mode='same')(x)x = Convolution2D(8, 3, 3, activation='relu', border_mode='same')(encoded)x = UpSampling2D((2, 2))(x)x = Convolution2D(8, 3, 3, activation='relu', border_mode='same')(x)x = UpSampling2D((2, 2))(x)x = Convolution2D(16, 3, 3, activation='relu')(x)x = UpSampling2D((2, 2))(x)decoded = Convolution2D(1, 3, 3, activation='sigmoid', border_mode='same')(x)autoencoder = Model(input_img, decoded)autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy')

这是我的训练和预测函数:

autoencoder.fit(X_train, X_train,            nb_epoch=10,            batch_size=128,            shuffle=True,            validation_data=(X_test, X_test))decoded_imgs = autoencoder.predict(X_test)

当我尝试编译时,我得到了以下错误。我的数据集中的所有图像都是32×32像素。为什么会出现这个错误?

Exception: Error when checking model target: expected convolution2d_7 to have shape (None, 1, 28, 28) but got array with shape (4200, 1, 32, 32)

我需要对模型做哪些更改,使输入形状变为(1,32,32)?


回答:

这很简单:

input_img = Input(shape=(1, 32, 32))x = Convolution2D(16, 3, 3, activation='relu', border_mode='same')(input_img)x = MaxPooling2D((2, 2), border_mode='same')(x)x = Convolution2D(8, 3, 3, activation='relu', border_mode='same')(x)x = MaxPooling2D((2, 2), border_mode='same')(x)x = Convolution2D(8, 2, 2, activation='relu', border_mode='same')(x)encoded = MaxPooling2D((2, 2), border_mode='same')(x)x = Convolution2D(8, 3, 3, activation='relu', border_mode='same')(encoded)x = UpSampling2D((2, 2))(x)x = Convolution2D(8, 3, 3, activation='relu', border_mode='same')(x)x = UpSampling2D((2, 2))(x)x = Convolution2D(16, 3, 3, activation='relu', border_mode='same')(x)x = UpSampling2D((2, 2))(x)decoded = Convolution2D(1, 3, 3, activation='sigmoid', border_mode='same')(x)autoencoder = Model(input_img, decoded)autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy')

你忘记在第六个卷积层添加适当的 border_mode='same' 参数了。

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注