计算或整合非线性决策线两侧的多元高斯概率

我有类似于下面的东西:
带决策线的pdf图

然而,我在整合决策线另一侧的数据以获取误差时遇到了很大的麻烦。


回答:

一般来说,如果你知道决策边界的解析形式,你可以精确计算积分。然而,为什么不使用蒙特卡洛方法呢?它快速、简单且通用(适用于任何分布和决策边界)。你所需要做的就是反复从你的高斯分布中抽样,检查抽样点是否在正确的一侧(N_c)或错误的一侧(N_i),在极限情况下,你将从以下公式中得到你的积分:

INTEGRAL_of_distributions_being_on_correct_side ~ N_c / (N_c + N_i)INTEGRAL_of_distributions_being_on_incorrect_side ~ N_i / (N_c + N_i) 

因此,在伪代码中:

N_c = 0N_i = 0for i=1 to N do   y ~ P({-, +}) # 抽样分布   x ~ P(X|y) # 从给定类别中抽样点   if side_of_decision(x) == y then     N_c += 1   else     N_i += 1   endendreturn N_c, N_i

在你的情况下,P({-, +})可能是50-50的概率,而P(X|-)P(X|+)是你那两个高斯分布。

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注