我是tensorflow
的新手,正在构建一个网络,但无法计算/应用其梯度。我遇到了以下错误:
ValueError: No gradients provided for any variable: ((None, tensorflow.python.ops.variables.Variable object at 0x1025436d0), ... (None, tensorflow.python.ops.variables.Variable object at 0x10800b590))
我尝试使用tensorboard图来查看是否有无法追踪图形和获取梯度的原因,但没有发现任何问题。
以下是代码的一部分:
sess = tf.Session()X = tf.placeholder(type, [batch_size,feature_size])W = tf.Variable(tf.random_normal([feature_size, elements_size * dictionary_size]), name="W")target_probabilties = tf.placeholder(type, [batch_size * elements_size, dictionary_size])lstm = tf.nn.rnn_cell.BasicLSTMCell(lstm_hidden_size)stacked_lstm = tf.nn.rnn_cell.MultiRNNCell([lstm] * number_of_layers)initial_state = state = stacked_lstm.zero_state(batch_size, type)output, state = stacked_lstm(X, state)pred = tf.matmul(output,W)pred = tf.reshape(pred, (batch_size * elements_size, dictionary_size))# 而不是计算这个,我将计算target_W与当前W之间的差异cross_entropy = tf.nn.softmax_cross_entropy_with_logits(target_probabilties, pred)cost = tf.reduce_mean(cross_entropy)optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)sess.run(optimizer, feed_dict={X:my_input, target_probabilties:target_prob})
任何帮助我解决这个问题的建议都将不胜感激。
回答:
我总是使用tf.nn.softmax_cross_entropy_with_logits(),这样我就可以将logits作为第一个参数,labels作为第二个参数。你可以试试这个吗?