FANN无法训练

我在使用FANN进行函数逼近。我的代码如下:

/* * File:   main.cpp * Author: johannsebastian * * Created on November 26, 2013, 8:50 PM */#include "../FANN-2.2.0-Source/src/include/doublefann.h"#include "../FANN-2.2.0-Source/src/include/fann_cpp.h"//#include <doublefann>//#include <fann/fann_cpp>#include <cstdlib>#include <iostream>using namespace std;using namespace FANN;//Remember: fann_type is double!int main(int argc, char** argv) {    //create a test network: [1,2,1] MLP    neural_net * net = new neural_net;    const unsigned int layers[3] = {1, 2, 1};    net->create_standard_array(3, layers);    //net->create_standard(num_layers, num_input, num_hidden, num_output);    //net->set_learning_rate(0.7f);    //net->set_activation_steepness_hidden(0.7);    //net->set_activation_steepness_output(0.7);    net->set_activation_function_hidden(SIGMOID);    net->set_activation_function_output(SIGMOID);    net->set_training_algorithm(TRAIN_RPROP);    //cout<<net->get_train_error_function()    //exit(0);    //test the number 2    fann_type * testinput = new fann_type;    *testinput = 2;    fann_type * testoutput = new fann_type;    *testoutput = *(net->run(testinput));    double outputasdouble = (double) *testoutput;    cout << "Test output: " << outputasdouble << endl;    //make a training set of x->x^2    training_data * squaredata = new training_data;    squaredata->read_train_from_file("trainingdata.txt");    //cout<<testinput[0]<<endl;    //cout<<testoutput[0]<<endl;    cout<<*(squaredata->get_input())[9]<<endl;    cout<<*(squaredata->get_output())[9]<<endl;    cout<<squaredata->length_train_data();    //scale data    fann_type * scaledinput = new fann_type[squaredata->length_train_data()];    fann_type * scaledoutput = new fann_type[squaredata->length_train_data()];    for (unsigned int i = 0; i < squaredata->length_train_data(); i++) {            scaledinput[i] = *squaredata->get_input()[i]/200;///100;            scaledoutput[i] = *squaredata->get_output()[i]/200;///100;            cout<<"In:\t"<<scaledinput[i]<<"\t Out:\t"<<scaledoutput[i]<<endl;    }    net->train_on_data(*squaredata, 1000000, 100000, 0.001);    *testoutput = *(net->run(testinput));    outputasdouble = (double) *testoutput;    cout << "Test output: " << outputasdouble << endl;    cout << endl << "Easy!";    return 0;}

这是trainingdata.txt的内容:

10 1 11 12 43 94 165 256 367 498 649 8110 100

运行后我得到以下结果:

Test output: 0.4914541010010In:   0.005    Out:   0.005In:     0.01     Out:   0.02In:     0.015    Out:   0.045In:     0.02     Out:   0.08In:     0.025    Out:   0.125In:     0.03     Out:   0.18In:     0.035    Out:   0.245In:     0.04     Out:   0.32In:     0.045    Out:   0.405In:     0.05     Out:   0.5Max epochs  1000000. Desired error: 0.0010000000.Epochs            1. Current error: 2493.7961425781. Bit fail 10.Epochs       100000. Current error: 2457.3000488281. Bit fail 9.Epochs       200000. Current error: 2457.3000488281. Bit fail 9.Epochs       300000. Current error: 2457.3000488281. Bit fail 9.Epochs       400000. Current error: 2457.3000488281. Bit fail 9.Epochs       500000. Current error: 2457.3000488281. Bit fail 9.Epochs       600000. Current error: 2457.3000488281. Bit fail 9.Epochs       700000. Current error: 2457.3000488281. Bit fail 9.Epochs       800000. Current error: 2457.3000488281. Bit fail 9.Epochs       900000. Current error: 2457.3000488281. Bit fail 9.Epochs      1000000. Current error: 2457.3000488281. Bit fail 9.Test output: 1Easy!RUN FINISHED; exit value 0; real time: 9s; user: 10ms; system: 4s

为什么训练没有效果?我之前问了一个类似的问题,有人告诉我应该对神经网络的输入和输出进行缩放。我已经这样做了。是我设置了错误的参数,还是需要更长时间的训练?


回答:

你的隐藏层节点数太少,无法拟合二次函数。我建议你尝试使用10个节点。此外,我推荐你使用一个有趣的小程序,你可以通过设置参数来模拟训练过程。我使用了10个隐藏层节点,并将隐藏层和输出层的激活函数都设置为单极性Sigmoid,拟合效果还不错(但随机化权重可能会导致无法收敛,因此强烈建议增加隐藏层节点数,你可以自己尝试这个小程序并观察一些有趣的点):

enter image description here

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注