我在玩一个关于文本分析的Kaggle竞赛的数据时,尝试拟合我的算法时总是遇到标题中描述的奇怪错误。我查了一下,发现这与我的矩阵在表示为稀疏矩阵时非零元素过于密集有关。我认为问题出在代码中的train_labels上,我的标签有24列,这本身就不太常见,标签是介于0和1之间的浮点数(包括0和1)。尽管我对问题有些了解,但我不知道如何正确解决它,我之前的尝试效果也不太好。你们有什么建议可以解决这个问题吗?
代码:
import numpy as npimport pandas as pimport nltkfrom sklearn.feature_extraction.text import TfidfVectorizerimport osfrom sklearn.linear_model import RidgeCVdir = "C:/Users/Anonymous/Desktop/KAGA FOLDER/Hashtags"def clean_the_text(data): alist = [] data = nltk.word_tokenize(data) for j in data: alist.append(j.rstrip('\n')) alist = " ".join(alist) return alistdef loop_data(data): for i in range(len(data)): data[i] = clean_the_text(data[i]) return data if __name__ == "__main__": print("loading data") train_text = loop_data(list(np.array(p.read_csv(os.path.join(dir,"train.csv")))[:,1])) test_set = loop_data(list(np.array(p.read_csv(os.path.join(dir,"test.csv")))[:,1])) train_labels = np.array(p.read_csv(os.path.join(dir,"train.csv")))[:,4:] #Vectorizing vectorizer = TfidfVectorizer(max_features = 10000,strip_accents = "unicode",analyzer = "word") ridge_classifier = RidgeCV(alphas = [0.001,0.01,0.1,1,10]) all_data = train_text + test_set train_length = len(train_text) print("fitting Vectorizer") vectorizer.fit(all_data) print("transforming text") all_data = vectorizer.transform(all_data) train = all_data[:train_length] test = all_data[train_length:] print("fitting and selecting models") ridge_classifier.fit(train,train_labels) print("predicting") pred = ridge_classifier.predict(test) np.savetxt(dir +"submission.csv", pred, fmt = "%d", delimiter = ",") print("submission_file created")
Traceback:
Traceback (most recent call last): File "C:\Users\Anonymous\workspace\final_submission\src\linearSVM.py", line 56, in <module> ridge_classifier.fit(train,train_labels) File "C:\Python27\lib\site-packages\sklearn\linear_model\ridge.py", line 817, in fit estimator.fit(X, y, sample_weight=sample_weight) File "C:\Python27\lib\site-packages\sklearn\linear_model\ridge.py", line 724, in fit v, Q, QT_y = _pre_compute(X, y) File "C:\Python27\lib\site-packages\sklearn\linear_model\ridge.py", line 609, in _pre_compute K = safe_sparse_dot(X, X.T, dense_output=True) File "C:\Python27\lib\site-packages\sklearn\utils\extmath.py", line 78, in safe_sparse_dot ret = a * b File "C:\Python27\lib\site-packages\scipy\sparse\base.py", line 303, in __mul__ return self._mul_sparse_matrix(other) File "C:\Python27\lib\site-packages\scipy\sparse\compressed.py", line 520, in _mul_sparse_matrix indices = np.empty(nnz, dtype=np.intc)ValueError: negative dimensions are not allowed
我怀疑我的标签是问题所在,所以这里是我的标签:
In [12]:undefinedimport pandas as pdimport numpy as npimport osdir = "C:\Users\Anonymous\Desktop\KAGA FOLDER\Hashtags"labels = np.array(pd.read_csv(os.path.join(dir,"train.csv")))[:,4:]labelsOut[12]:array([[0.0, 0.0, 1.0, ..., 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, ..., 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, ..., 0.0, 0.0, 0.0], ..., [0.0, 0.0, 0.0, ..., 1.0, 0.0, 0.0], [0.0, 0.385, 0.41, ..., 0.0, 0.0, 0.0], [0.0, 0.20199999999999999, 0.395, ..., 0.0, 0.0, 0.0]], dtype=object)In [13]:undefinedlabels.shapeOut[13]:(77946L, 24L)
回答:
问题是由于尺寸不匹配造成的。
train_labels
实际上是所有数据的类别。 train
和 train_labels
的尺寸应该匹配。