如何在Tkinter Python中使文本加粗并在之间留出空格?

enter image description here

在我的代码中,我只想让发送者的名字加粗。这意味着我只想让“User”和“Gpt-3.5-turbo”加粗。不知为何,由“User”发送的消息总是加粗。此外,如我附件的图片所示,“User”和“Gpt-3.5-turbo”之间没有换行,尽管在“User”和“Gpt-3.5-turbo”的第一条消息之间有空格。我尝试了许多命令来解决这个问题,但都没有成功。有人能帮我解决这两个问题吗?以下是我的代码:

import tkinter as tkfrom tkinter import ttkfrom datetime import datetimeimport openaiimport jsonimport requestshistory = []# Create a function to use ChatGPT 3.5 turbo to answer a question based on the promptdef get_answer_from_chatgpt(prompt, history):    openai.api_key = "sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"    print("Trying")    messages = [            {"role": "system", "content": "You are a helpful assistant."}        ]    for sender, message in history:            messages.append({"role": sender, "content": message})    try:        stream = openai.chat.completions.create(            model="gpt-3.5-turbo",            messages=messages,            stream=True,                    )        append_to_chat_log("Gpt-3.5-turbo")        for chunk in stream:            if chunk.choices[0].delta.content is not None:               chunk = chunk.choices[0].delta.content               append_to_chat_log(message=chunk)                #history.append(("assistant", chunk))        append_to_chat_log(message="\n")                #chat_log.insert("end",'\n\n')                print("Streamig complete")            except Exception as e:        print(e)        return "Sorry, an error occurred while processing your request."def append_to_chat_log(sender=None, message=None):       chat_log.config(state=tk.NORMAL)    if sender:        chat_log.insert("end", f"{sender}\n\n", "sender")                #chat_log.insert("end",'\n\n')    if message:        chat_log.insert("end", message)    chat_log.tag_config("sender", font=('Arial', 12, 'bold'))    chat_log.config(state=tk.DISABLED)    chat_log.see("end")    chat_log.update()def send_message(event=None):    global history    message = message_entry.get(1.0, "end-1c")     message = message.strip()    message_entry.delete(1.0, tk.END)    message_entry.update()        if not message:        pass     else:        append_to_chat_log("User")        append_to_chat_log(message)        history.append(("user", message))        if len(history) >4:            history = history[-4:]        get_answer_from_chatgpt(message, history)        print(history)root = tk.Tk()root.title("Chat")# Maximize the windowroot.attributes('-zoomed', True)chat_frame = tk.Frame(root)chat_frame.pack(expand=True, fill=tk.BOTH)chat_log = tk.Text(chat_frame, state='disabled', wrap='word', width=70, height=30, font=('Arial', 12), highlightthickness=0, borderwidth=0)chat_log.pack(side=tk.LEFT, padx=(500,0), pady=10)message_entry = tk.Text(root, padx=17, insertbackground='white', width=70, height=1, spacing1=20, spacing3=20, font=('Open Sans', 14))message_entry.pack(side=tk.LEFT, padx=(500, 0), pady=(0, 70))  # Adjust pady to move it slightly above the bottom#message_entry.insert(0, "Ask me anything...")message_entry.insert(1.0, "Ask me anything...")message_entry.mark_set("insert", "%d.%d" % (0,0))message_entry.bind("<Return>", send_message)#message_entry.bind("<Button-1>", click)root.mainloop()

我尝试使用像chat_log.insert("end",'\n\n')append_to_chat_log(message="\n")这样的命令在def get_answer_from_chatgpt(prompt, history):函数中,但似乎都不起作用。


回答:

用户的消息之所以加粗,是因为你在append_to_chat_log()函数中对message的调用有误,你需要像下面这样使用message选项:

def send_message(event=None):    ...    else:        append_to_chat_log("User")  # 记录发送者        append_to_chat_log(message=message)  # 记录消息        ...

要在消息之间添加换行符,你可以在GPT响应前后添加换行消息:

def get_answer_from_chatgpt(message, history):    ...    try:        ...        # 在响应前添加换行符        append_to_chat_log(message="\n\n")        append_to_chat_log("Gpt-3.5-turbo")        for chunk in stream:            ...        # 在响应后添加换行符        append_to_chat_log(message="\n\n")        ...    ...

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注