无法将包含每个单元格中numpy数组的pandas列转换为tensorflow张量

df=pd.DataFrame({'image_path':'a','valu':[tf.zeros((75,),dtype=tf.dtypes.float32).numpy()] }) df=df.iloc[1:,:] for i in range(10):     ten=tf.zeros((75,), dtype=tf.dtypes.float32)     ten=ten.numpy()     df.loc[len(df.index)]=['a',ten]df.head()

df.head()

 image_path      valu 0       a       [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ... 1       a       [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ... 2       a       [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ... 3       a       [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ... 4       a       [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ...y=df.valuprint(y)y=tf.convert_to_tensor(y)

这个问题发生在开发一个keras模型时,其中标签是一个类似这样的数组,相关链接如下

这是我遇到的问题的实际链接

*这是我得到的错误*

ValueError                                Traceback (most recent call last) <ipython-input-48-108b1fd37149> in <module>       1 y=df.valu       2 print(y) ----> 3 y=tf.convert_to_tensor(y)       4 print(y.shape)       5 print(y) /opt/conda/lib/python3.7/site-packages/tensorflow/python/util/dispatch.py in wrapper(*args, **kwargs)     199     """Call target, and fall back on dispatchers if there is a TypeError."""     200     try: --> 201       return target(*args, **kwargs)     202     except (TypeError, ValueError):     203       # Note: convert_to_eager_tensor currently raises a ValueError, not a /opt/conda/lib/python3.7/site-packages/tensorflow/python/framework/ops.py in convert_to_tensor_v2_with_dispatch(value, dtype, dtype_hint, name)    1403   """    1404   return convert_to_tensor_v2( -> 1405       value, dtype=dtype, dtype_hint=dtype_hint, name=name)    1406     1407  /opt/conda/lib/python3.7/site-packages/tensorflow/python/framework/ops.py in convert_to_tensor_v2(value, dtype, dtype_hint, name)    1413       name=name,    1414       preferred_dtype=dtype_hint, -> 1415       as_ref=False)    1416     1417  /opt/conda/lib/python3.7/site-packages/tensorflow/python/profiler/trace.py in wrapped(*args, **kwargs)     161         with Trace(trace_name, **trace_kwargs):     162           return func(*args, **kwargs) --> 163       return func(*args, **kwargs)     164      165     return wrapped /opt/conda/lib/python3.7/site-packages/tensorflow/python/framework/ops.py in convert_to_tensor(value, dtype, name, as_ref, preferred_dtype, dtype_hint, ctx, accepted_result_types)    1538     1539     if ret is None: -> 1540       ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref)    1541     1542     if ret is NotImplemented: /opt/conda/lib/python3.7/site-packages/tensorflow/python/framework/constant_op.py in _constant_tensor_conversion_function(v, dtype, name, as_ref)     337                                          as_ref=False):     338   _ = as_ref --> 339   return constant(v, dtype=dtype, name=name)     340      341  /opt/conda/lib/python3.7/site-packages/tensorflow/python/framework/constant_op.py in constant(value, dtype, shape, name)     263   """     264   return _constant_impl(value, dtype, shape, name, verify_shape=False, --> 265                         allow_broadcast=True)     266      267  /opt/conda/lib/python3.7/site-packages/tensorflow/python/framework/constant_op.py in _constant_impl(value, dtype, shape, name, verify_shape, allow_broadcast)     274       with trace.Trace("tf.constant"):     275         return _constant_eager_impl(ctx, value, dtype, shape, verify_shape) --> 276     return _constant_eager_impl(ctx, value, dtype, shape, verify_shape)     277      278   g = ops.get_default_graph()  /opt/conda/lib/python3.7/site-packages/tensorflow/python/framework/constant_op.py in _constant_eager_impl(ctx, value, dtype, shape, verify_shape)     299 def _constant_eager_impl(ctx, value, dtype, shape, verify_shape):     300   """Implementation of eager constant.""" --> 301   t = convert_to_eager_tensor(value, ctx, dtype)     302   if shape is None:     303     return t /opt/conda/lib/python3.7/site-packages/tensorflow/python/framework/constant_op.py in convert_to_eager_tensor(value, ctx, dtype)      96       dtype = dtypes.as_dtype(dtype).as_datatype_enum      97   ctx.ensure_initialized() ---> 98   return ops.EagerTensor(value, ctx.device_name, dtype)      99       100  ValueError: Failed to convert a NumPy array to a Tensor (Unsupported object type numpy.ndarray).

这是我在输出中得到的错误,上面有一个链接指向原始问题,但我已经找出了问题发生的确切位置,所以…在这里需要帮助


回答:

x = [list(i) for i in y.values]y=tf.convert_to_tensor(x)print(y)

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注