大家好!我们正在编写自己的AI,并且在创建正确的模型层时遇到了困难。我们需要输入到神经网络中的是一个list
,它包含n个lists
,每个lists
中包含m个tuples
e.x. list = numpy.array([ [[1,2,4],[5,6,8]] , [[5,6,0],[7,2,4]] ])
我们期望得到的结果是0或1(这确实有意义,请相信我)
这是我们目前的模型:
tpl = 3 # 因为我们有tuplesnl = 2 # 我们拥有的列表数量model = tf.keras.Sequential([# 这应该是能够理解我们列表的入口层 tf.keras.layers.Dense(nl * tpl , input_shape=(nl, tpl), activation='relu'),#隐藏层.. tf.keras.layers.Dense(64, input_shape=(nl, tpl), activation='sigmoid'),#我们的输出层有2个节点,一个应该包含0,另一个包含1,因为我们有两个标签(0和1) tf.keras.layers.Dense(2, input_shape=(0, 1), activation='softmax') ])
但我们得到了以下错误:
/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/execute.py in quick_execute(op_name, num_outputs, inputs, attrs, ctx, name) 58 ctx.ensure_initialized() 59 tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,---> 60 inputs, attrs, num_outputs) 61 except core._NotOkStatusException as e: 62 if name is not None:InvalidArgumentError: Incompatible shapes: [56,2,2] vs. [56,1] [[node huber_loss/Sub (defined at <ipython-input-25-08eb2e0b395e>:53) ]] [Op:__inference_train_function_45699]Function call stack:train_function
如果我们总结我们的模型,它会显示以下结构:
Layer (type) Output Shape Param # =================================================================dense_1 (Dense) (None, 2, 6) 24 _________________________________________________________________dense_2 (Dense) (None, 2, 64) 448 _________________________________________________________________dense_3 (Dense) (None, 2, 2) 130 =================================================================
最后,
我们理解到我们提供的数据与最后一层不兼容,那么我们如何将最后一层转换为=>形状(None, 2),或者如何正确解决这个错误?
回答:
你可以在输出层之前使用Flatten()
或GlobalAveragePooling1D
。完整示例:
import numpyimport tensorflow as tflist = numpy.array([[[1., 2., 4.], [5., 6., 8.]], [[5., 6., 0.], [7., 2., 4.]]])tpl = 3 nl = 2 model = tf.keras.Sequential([ tf.keras.layers.Dense(nl * tpl, input_shape=(nl, tpl), activation='relu'), tf.keras.layers.Dense(64, input_shape=(nl, tpl), activation='sigmoid'), tf.keras.layers.GlobalAveragePooling1D(), tf.keras.layers.Dense(2, input_shape=(0, 1), activation='softmax')])model.build(input_shape=(nl, tpl))model(list)
<tf.Tensor: shape=(2, 2), dtype=float32, numpy=array([[0.41599566, 0.58400434], [0.41397247, 0.58602756]], dtype=float32)>
不过,你不会只得到0和1,你会得到每个类别的概率。另外,你应该避免使用内置关键字list
。
Model: "sequential_4"_________________________________________________________________Layer (type) Output Shape Param # =================================================================dense_12 (Dense) (None, 2, 6) 24 _________________________________________________________________dense_13 (Dense) (None, 2, 64) 448 _________________________________________________________________global_average_pooling1d (Gl (None, 64) 0 _________________________________________________________________dense_14 (Dense) (None, 2) 130 =================================================================Total params: 602Trainable params: 602Non-trainable params: 0_________________________________________________________________