我目前正在使用MATLAB进行一个项目,使用的是MNIST数据集。我有一个包含50000个训练数据的集合,由一个784 x 50000的矩阵表示(50000个大小为784的列向量)。
我试图将我的训练和测试数据按70-30的比例分开,但我使用的方法有点冗长且过于直接。考虑到这是MATLAB,我相信一定有更好的方法。我一直在使用的代码如下所示。我是MATLAB的新手,请帮助我!谢谢 🙂
% MNIST - data loads into trn and trnAns, representing% the input vectors and the desired output vectors, respectivelyload('Data/mnistTrn.mat');mnist_train = zeros(784, 35000);mnist_train_ans = zeros(10, 35000);mnist_test = zeros(784, 15000);mnist_test_ans = zeros(10, 15000);indexes = zeros(1,50000);for i = 1:50000 indexes(i) = i;endindexes(randperm(length(indexes)));for i = 1:50000 if i <= 35000 mnist_train (:,i) = trn(:,indexes(i)); mnist_train_ans(:,i) = trnAns(:,indexes(i)); else mnist_test(:,i-35000) = trn(:,indexes(i)); mnist_test_ans(:,i-35000) = trnAns(:,indexes(i)); endend
回答:
希望这个方法有效:
% MNIST - data loads into trn and trnAns, representing% the input vectors and the desired output vectors, respectivelyload('Data/mnistTrn.mat');% Generating a random permutation for both trn and trnAns:perm = randperm(50000);% Shuffling both trn and trnAns columns using a single random permutations: trn = trn(:, perm);trnAns = trnAns(:, perm);mnist_train = trn(:, 1:35000);mnist_train_ans = trnAns(:, 1:35000);mnist_test = trn(:, 35001:50000);mnist_test_ans = trnAns(:, 35001:50000);