如何将神经网络从C语言翻译成PHP

我正在尝试将这个算法从C语言翻译成PHP(用于学习)。这是一个感知器的例子。我复制了用C语言编写的例子,并试图将其翻译成PHP。目前我写了这段代码,我哪里做错了?作为输出,我只知道101次迭代,结果总是1。

这是C语言程序:

    #include <stdio.h>#include <stdlib.h>#include <math.h>#include <time.h>#define LEARNING_RATE    0.1#define MAX_ITERATION    100float randomFloat(){    return (float)rand() / (float)RAND_MAX;}int calculateOutput(float weights[], float x, float y){    float sum = x * weights[0] + y * weights[1] + weights[2];    return (sum >= 0) ? 1 : -1;}int main(int argc, char *argv[]){    srand(time(NULL));    float x[208], y[208], weights[3], localError, globalError;    int outputs[208], patternCount, i, p, iteration, output;    FILE *fp;    if ((fp = fopen("test1.txt", "r")) == NULL) {        printf("Cannot open file.\n");        exit(1);    }    i = 0;    while (fscanf(fp, "%f %f %d", &x[i], &y[i], &outputs[i]) != EOF) {        if (outputs[i] == 0) {            outputs[i] = -1;        }        i++;    }    patternCount = i;    weights[0] = randomFloat();    weights[1] = randomFloat();    weights[2] = randomFloat();    iteration = 0;    do {        iteration++;        globalError = 0;        for (p = 0; p < patternCount; p++) {            output = calculateOutput(weights, x[p], y[p]);            localError = outputs[p] - output;            weights[0] += LEARNING_RATE * localError * x[p];            weights[1] += LEARNING_RATE * localError * y[p];            weights[2] += LEARNING_RATE * localError;            globalError += (localError*localError);        }        /* Root Mean Squared Error */        printf("Iteration %d : RMSE = %.4f\n", iteration,               sqrt(globalError/patternCount));    } while (globalError != 0 && iteration<=MAX_ITERATION);    printf("\nDecision boundary (line) equation: %.2f*x + %.2f*y + %.2f = 0\n",           weights[0], weights[1], weights[2]);    return 0;}

这是我写的代码

   <?php    define("LEARNING_RATE", 0.1);    define("MAX_ITERATION", 100);    function randomFloat(){ return (float) mt_rand() / mt_getrandmax(); }    function calculateOutput($weights, $x, $y){        $sum = (float) $x * $weights[0] + $y * $weights[1] + $weights[2];        return ($sum >= 0) ? 1 : -1;    }    srand(time());    $i = 0;    $ars = explode("\n",file_get_contents('https://raw.githubusercontent.com/RichardKnop/ansi-c-perceptron/master/test1.txt'));    foreach($ars as $ar){        $temp = explode("\t", $ar);        $x[$i] = (float) $temp[0];        $y[$i] = (float) $temp[1];        $output[$i] = (int) $temp[2];        if($output[$i] == 0)            $output[$i] = -1;        $i++;   }   $patternCount = $i;   $weights[0] = randomFloat();   $weights[1] = randomFloat();   $weights[2] = randomFloat();   $iteration = 0;   do{       $iteration++;       $globalError = 0;       for ($p = 0; $p < $patternCount; $p++) {           $output = calculateOutput($weights, $x[$p], $y[$p]);           $localError = $outputs[$p] - $output;           $weights[0] += LEARNING_RATE * $localError * $x[$p];           $weights[1] += LEARNING_RATE * $localError * $y[$p];           $weights[2] += LEARNING_RATE * $localError;           $globalError += ($localError*$localError);       }       $r .= "Iteration $iteration : RMSE = " . sqrt($globalError/$patternCount)."<br>";}while($globalError != 0 && $iteration<=MAX_ITERATION);echo $r;echo "<br><hr><br>";echo "Decision boundary (line) equation: ".$weights[0]."*x + ".$weights[1]."*y + ".$weights[2]." = 0<br>";

这两段代码几乎相同,但为什么它不起作用呢?


回答:

    $ars = explode("\n",file_get_contents('…'));

由于文件以\n结尾,这会导致最后一个数组值为空字符串,从而扰乱foreach($ars as $ar)循环。要将文件读入数组,可以简单地使用:

    $ars = file('…');

foreach($ars as $ar)循环中,你使用了错误的名称$output[$i],而不是$outputs[$i]


       $r .= "Iteration $iteration : RMSE = " . sqrt($globalError/$patternCount)."<br>";}while($globalError != 0 && $iteration<=MAX_ITERATION);echo $r;

你没有初始化$r。代替上述代码,你可以使用:

       echo "Iteration $iteration : RMSE = " .             sqrt($globalError/$patternCount)."<br>";    } while ($globalError != 0 && $iteration<=MAX_ITERATION);

Related Posts

L1-L2正则化的不同系数

我想对网络的权重同时应用L1和L2正则化。然而,我找不…

使用scikit-learn的无监督方法将列表分类成不同组别,有没有办法?

我有一系列实例,每个实例都有一份列表,代表它所遵循的不…

f1_score metric in lightgbm

我想使用自定义指标f1_score来训练一个lgb模型…

通过相关系数矩阵进行特征选择

我在测试不同的算法时,如逻辑回归、高斯朴素贝叶斯、随机…

可以将机器学习库用于流式输入和输出吗?

已关闭。此问题需要更加聚焦。目前不接受回答。 想要改进…

在TensorFlow中,queue.dequeue_up_to()方法的用途是什么?

我对这个方法感到非常困惑,特别是当我发现这个令人费解的…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注