无法从层’fc6’复制参数0的权重

我在尝试使用训练好的网络进行预测时遇到了这个错误:无法从层’fc6’复制参数0的权重

这是我的deploy.prototxt文件

name: "CaffeNet"layer {  name: "data"  type: "Input"  top: "data"  input_param { shape: { dim: 1 dim: 1 dim: 150 dim: 227 } }}layer {  name: "conv1"  type: "Convolution"  bottom: "data"  top: "conv1"  convolution_param {    num_output: 96    kernel_size: 11    stride: 4  }}layer {  name: "relu1"  type: "ReLU"  bottom: "conv1"  top: "conv1"}layer {  name: "pool1"  type: "Pooling"  bottom: "conv1"  top: "pool1"  pooling_param {    pool: MAX    kernel_size: 3    stride: 2  }}layer {  name: "norm1"  type: "LRN"  bottom: "pool1"  top: "norm1"  lrn_param {    local_size: 5    alpha: 0.0001    beta: 0.75  }}layer {  name: "conv2"  type: "Convolution"  bottom: "norm1"  top: "conv2"  convolution_param {    num_output: 256    pad: 2    kernel_size: 5    group: 2  }}layer {  name: "relu2"  type: "ReLU"  bottom: "conv2"  top: "conv2"}layer {  name: "pool2"  type: "Pooling"  bottom: "conv2"  top: "pool2"  pooling_param {    pool: MAX    kernel_size: 3    stride: 2  }}layer {  name: "norm2"  type: "LRN"  bottom: "pool2"  top: "norm2"  lrn_param {    local_size: 5    alpha: 0.0001    beta: 0.75  }}layer {  name: "conv3"  type: "Convolution"  bottom: "norm2"  top: "conv3"  convolution_param {    num_output: 384    pad: 1    kernel_size: 3  }}layer {  name: "relu3"  type: "ReLU"  bottom: "conv3"  top: "conv3"}layer {  name: "conv4"  type: "Convolution"  bottom: "conv3"  top: "conv4"  convolution_param {    num_output: 384    pad: 1    kernel_size: 3    group: 2  }}layer {  name: "relu4"  type: "ReLU"  bottom: "conv4"  top: "conv4"}layer {  name: "conv5"  type: "Convolution"  bottom: "conv4"  top: "conv5"  convolution_param {    num_output: 256    pad: 1    kernel_size: 3    group: 2  }}layer {  name: "relu5"  type: "ReLU"  bottom: "conv5"  top: "conv5"}layer {  name: "pool5"  type: "Pooling"  bottom: "conv5"  top: "pool5"  pooling_param {    pool: MAX    kernel_size: 3    stride: 2  }}layer {  name: "fc6"  type: "InnerProduct"  bottom: "pool5"  top: "fc6"  inner_product_param {    num_output: 4096  }}layer {  name: "relu6"  type: "ReLU"  bottom: "fc6"  top: "fc6"}layer {  name: "drop6"  type: "Dropout"  bottom: "fc6"  top: "fc6"  dropout_param {    dropout_ratio: 0.5  }}layer {  name: "fc7"  type: "InnerProduct"  bottom: "fc6"  top: "fc7"  inner_product_param {    num_output: 4096  }}layer {  name: "relu7"  type: "ReLU"  bottom: "fc7"  top: "fc7"}layer {  name: "drop7"  type: "Dropout"  bottom: "fc7"  top: "fc7"  dropout_param {    dropout_ratio: 0.5  }}layer {  name: "fc8"  type: "InnerProduct"  bottom: "fc7"  top: "fc8"  inner_product_param {    num_output: 2  }}layer {  name: "prob"  type: "Softmax"  bottom: "fc8"  top: "prob"}

这是我的train_val.prototxt文件

name: "CaffeNet"layer {  name: "data"  type: "Data"  top: "data"  top: "label"  include {    phase: TRAIN  }  transform_param {    mirror: true    crop_size: 150    mean_file: "/home/ttb010/TT/partituras/input/mean.binaryproto"  }# mean pixel / channel-wise mean instead of mean image#  transform_param {#    crop_size: 150#    mean_value: 104#    mean_value: 117#    mean_value: 123#    mirror: true#  }  data_param {    source: "/home/ttb010/TT/partituras/input/train_lmdb"    batch_size: 256    backend: LMDB  }}layer {  name: "data"  type: "Data"  top: "data"  top: "label"  include {    phase: TEST  }  transform_param {    mirror: false    crop_size: 150    mean_file: "/home/ttb010/TT/partituras/input/mean.binaryproto"  }# mean pixel / channel-wise mean instead of mean image#  transform_param {#    crop_size: 150#    mean_value: 104#    mean_value: 117#    mean_value: 123#    mirror: true#  }  data_param {    source: "/home/ttb010/TT/partituras/input/validation_lmdb"    batch_size: 50    backend: LMDB  }}layer {  name: "conv1"  type: "Convolution"  bottom: "data"  top: "conv1"  param {    lr_mult: 1    decay_mult: 1  }  param {    lr_mult: 2    decay_mult: 0  }  convolution_param {    num_output: 96    kernel_size: 11    stride: 4    weight_filler {      type: "gaussian"      std: 0.01    }    bias_filler {      type: "constant"      value: 0    }  }}layer {  name: "relu1"  type: "ReLU"  bottom: "conv1"  top: "conv1"}layer {  name: "pool1"  type: "Pooling"  bottom: "conv1"  top: "pool1"  pooling_param {    pool: MAX    kernel_size: 3    stride: 2  }}layer {  name: "norm1"  type: "LRN"  bottom: "pool1"  top: "norm1"  lrn_param {    local_size: 5    alpha: 0.0001    beta: 0.75  }}layer {  name: "conv2"  type: "Convolution"  bottom: "norm1"  top: "conv2"  param {    lr_mult: 1    decay_mult: 1  }  param {    lr_mult: 2    decay_mult: 0  }  convolution_param {    num_output: 256    pad: 2    kernel_size: 5    group: 2    weight_filler {      type: "gaussian"      std: 0.01    }    bias_filler {      type: "constant"      value: 1    }  }}layer {  name: "relu2"  type: "ReLU"  bottom: "conv2"  top: "conv2"}layer {  name: "pool2"  type: "Pooling"  bottom: "conv2"  top: "pool2"  pooling_param {    pool: MAX    kernel_size: 3    stride: 2  }}layer {  name: "norm2"  type: "LRN"  bottom: "pool2"  top: "norm2"  lrn_param {    local_size: 5    alpha: 0.0001    beta: 0.75  }}layer {  name: "conv3"  type: "Convolution"  bottom: "norm2"  top: "conv3"  param {    lr_mult: 1    decay_mult: 1  }  param {    lr_mult: 2    decay_mult: 0  }  convolution_param {    num_output: 384    pad: 1    kernel_size: 3    weight_filler {      type: "gaussian"      std: 0.01    }    bias_filler {      type: "constant"      value: 0    }  }}layer {  name: "relu3"  type: "ReLU"  bottom: "conv3"  top: "conv3"}layer {  name: "conv4"  type: "Convolution"  bottom: "conv3"  top: "conv4"  param {    lr_mult: 1    decay_mult: 1  }  param {    lr_mult: 2    decay_mult: 0  }  convolution_param {    num_output: 384    pad: 1    kernel_size: 3    group: 2    weight_filler {      type: "gaussian"      std: 0.01    }    bias_filler {      type: "constant"      value: 1    }  }}layer {  name: "relu4"  type: "ReLU"  bottom: "conv4"  top: "conv4"}layer {  name: "conv5"  type: "Convolution"  bottom: "conv4"  top: "conv5"  param {    lr_mult: 1    decay_mult: 1  }  param {    lr_mult: 2    decay_mult: 0  }  convolution_param {    num_output: 256    pad: 1    kernel_size: 3    group: 2    weight_filler {      type: "gaussian"      std: 0.01    }    bias_filler {      type: "constant"      value: 1    }  }}layer {  name: "relu5"  type: "ReLU"  bottom: "conv5"  top: "conv5"}layer {  name: "pool5"  type: "Pooling"  bottom: "conv5"  top: "pool5"  pooling_param {    pool: MAX    kernel_size: 3    stride: 2  }}layer {  name: "fc6"  type: "InnerProduct"  bottom: "pool5"  top: "fc6"  param {    lr_mult: 1    decay_mult: 1  }  param {    lr_mult: 2    decay_mult: 0  }  inner_product_param {    num_output: 4096    weight_filler {      type: "gaussian"      std: 0.005    }    bias_filler {      type: "constant"      value: 1    }  }}layer {  name: "relu6"  type: "ReLU"  bottom: "fc6"  top: "fc6"}layer {  name: "drop6"  type: "Dropout"  bottom: "fc6"  top: "fc6"  dropout_param {    dropout_ratio: 0.5  }}layer {  name: "fc7"  type: "InnerProduct"  bottom: "fc6"  top: "fc7"  param {    lr_mult: 1    decay_mult: 1  }  param {    lr_mult: 2    decay_mult: 0  }  inner_product_param {    num_output: 4096    weight_filler {      type: "gaussian"      std: 0.005    }    bias_filler {      type: "constant"      value: 1    }  }}layer {  name: "relu7"  type: "ReLU"  bottom: "fc7"  top: "fc7"}layer {  name: "drop7"  type: "Dropout"  bottom: "fc7"  top: "fc7"  dropout_param {    dropout_ratio: 0.5  }}layer {  name: "fc8"  type: "InnerProduct"  bottom: "fc7"  top: "fc8"  param {    lr_mult: 1    decay_mult: 1  }  param {    lr_mult: 2    decay_mult: 0  }  inner_product_param {    num_output: 15    weight_filler {      type: "gaussian"      std: 0.01    }    bias_filler {      type: "constant"      value: 0    }  }}layer {  name: "accuracy"  type: "Accuracy"  bottom: "fc8"  bottom: "label"  top: "accuracy"  include {    phase: TEST  }}layer {  name: "loss"  type: "SoftmaxWithLoss"  bottom: "fc8"  bottom: "label"  top: "loss"}

我一直在搜索,但我不完全理解为什么会发生这种情况。我使用的是灰度图像,然后对它们进行二值化。我在训练网络时使用的输入图像大小为150×227。我知道在deploy.prototxt中,输入参数形状维度代表使用的通道数和图像大小,但我缺少另一个维度。解决这个问题的可能方法是什么?在此之前非常感谢,我很绝望。


回答:

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注