Weka分类:错误+正确 < 总实例数,这是怎么回事?

我针对著名的Iris花朵问题运行了这段代码,进行了10折交叉验证,然后使用5种不同的分类方法对它们进行分类。

这应该使分类器在135个实例上进行训练,并在15个实例上进行测试,重复10次,所以我期望错误分类的实例数 + 正确分类的实例数 = 15。

以下是代码和输出。

public class WekaTest {   public static void main(String[] args) throws Exception {          // Comments are denoted by "//" at the beginning of the line.    BufferedReader datafile = readDataFile("C:\\Program Files\\Weka-3-8\\data\\iris.arff");    //BufferedReader datafile = readDataFile("C:\\hwork\\titanic\\train.arff");    Instances data = new Instances(datafile);    data.setClassIndex(data.numAttributes() - 1);    // Choose a type of validation split    Instances[][] split = crossValidationSplit(data, 10);    // Separate split into training and testing arrays    Instances[] trainingSplits = split[0];    Instances[] testingSplits  = split[1];    // Choose a set of classifiers    Classifier[] models = {     new J48(),                                new PART(),                                new DecisionTable(),                                new OneR(),                                new DecisionStump() };    // Run for each classifier model    double[][][] predictions = new double[100][100][2];    for(int j = 0; j < models.length; j++) {                for(int i = 0; i < trainingSplits.length; i++) {                           Evaluation validation = new Evaluation(trainingSplits[i]);                   models[j].buildClassifier(trainingSplits[i]);           validation.evaluateModel(models[j],  testingSplits[i]);                                               predictions[j][i][0] = validation.correct();           predictions[j][i][1] = validation.incorrect();           System.out.println("Classifier: "+models[j].getClass()+" : Correct: "+predictions[j][i][0]+", Wrong: "+predictions[i][j][1]);                       }//training foreach fold.        System.out.println("===================================================================");    }//training foreach classifier.}//main().public static BufferedReader readDataFile(String filename) {    BufferedReader inputReader = null;    try {        inputReader = new BufferedReader(new FileReader(filename));    } catch (FileNotFoundException ex) {        System.err.println("File not found: " + filename);    }            return inputReader;}//readDataFile().public static Evaluation simpleClassify(Classifier model, Instances trainingSet, Instances testingSet) throws Exception {    Evaluation validation = new Evaluation(trainingSet);            model.buildClassifier(trainingSet);    validation.evaluateModel(model, testingSet);            return validation;}//simpleClassify().public static double calculateAccuracy(FastVector predictions) {    double correct = 0;    for (int i = 0; i < predictions.size(); i++) {        NominalPrediction np = (NominalPrediction) predictions.elementAt(i);        if (np.predicted() == np.actual()) {            correct++;        }    }    return 100 * correct / predictions.size();}//calculateAccuracy().public static Instances[][] crossValidationSplit(Instances data, int numberOfFolds) {    Instances[][] split = new Instances[2][numberOfFolds];    for (int i = 0; i < numberOfFolds; i++) {        split[0][i] = data.trainCV(numberOfFolds, i);        split[1][i] = data.testCV(numberOfFolds, i);    }            return split;}//corssValidationSplit().}//class.

====================

输出结果:

Classifier: class weka.classifiers.trees.J48 : Correct: 15.0, Wrong: 0.0Classifier: class weka.classifiers.trees.J48 : Correct: 15.0, Wrong: 0.0Classifier: class weka.classifiers.trees.J48 : Correct: 14.0, Wrong: 0.0Classifier: class weka.classifiers.trees.J48 : Correct: 15.0, Wrong: 0.0Classifier: class weka.classifiers.trees.J48 : Correct: 14.0, Wrong: 0.0Classifier: class weka.classifiers.trees.J48 : Correct: 13.0, Wrong: 0.0Classifier: class weka.classifiers.trees.J48 : Correct: 15.0, Wrong: 0.0Classifier: class weka.classifiers.trees.J48 : Correct: 13.0, Wrong: 0.0Classifier: class weka.classifiers.trees.J48 : Correct: 12.0, Wrong: 0.0Classifier: class weka.classifiers.trees.J48 : Correct: 15.0, Wrong: 0.0===================================================================Classifier: class weka.classifiers.rules.PART : Correct: 15.0, Wrong: 0.0Classifier: class weka.classifiers.rules.PART : Correct: 15.0, Wrong: 0.0Classifier: class weka.classifiers.rules.PART : Correct: 14.0, Wrong: 0.0Classifier: class weka.classifiers.rules.PART : Correct: 15.0, Wrong: 0.0Classifier: class weka.classifiers.rules.PART : Correct: 14.0, Wrong: 0.0Classifier: class weka.classifiers.rules.PART : Correct: 13.0, Wrong: 0.0Classifier: class weka.classifiers.rules.PART : Correct: 15.0, Wrong: 0.0Classifier: class weka.classifiers.rules.PART : Correct: 13.0, Wrong: 0.0Classifier: class weka.classifiers.rules.PART : Correct: 9.0, Wrong: 0.0Classifier: class weka.classifiers.rules.PART : Correct: 13.0, Wrong: 0.0===================================================================Classifier: class weka.classifiers.rules.DecisionTable : Correct: 15.0, Wrong: 1.0Classifier: class weka.classifiers.rules.DecisionTable : Correct: 15.0, Wrong: 1.0Classifier: class weka.classifiers.rules.DecisionTable : Correct: 15.0, Wrong: 0.0Classifier: class weka.classifiers.rules.DecisionTable : Correct: 15.0, Wrong: 0.0Classifier: class weka.classifiers.rules.DecisionTable : Correct: 13.0, Wrong: 0.0Classifier: class weka.classifiers.rules.DecisionTable : Correct: 13.0, Wrong: 0.0Classifier: class weka.classifiers.rules.DecisionTable : Correct: 15.0, Wrong: 0.0Classifier: class weka.classifiers.rules.DecisionTable : Correct: 13.0, Wrong: 0.0Classifier: class weka.classifiers.rules.DecisionTable : Correct: 12.0, Wrong: 0.0Classifier: class weka.classifiers.rules.DecisionTable : Correct: 14.0, Wrong: 0.0===================================================================Classifier: class weka.classifiers.rules.OneR : Correct: 15.0, Wrong: 0.0Classifier: class weka.classifiers.rules.OneR : Correct: 15.0, Wrong: 0.0Classifier: class weka.classifiers.rules.OneR : Correct: 15.0, Wrong: 0.0Classifier: class weka.classifiers.rules.OneR : Correct: 14.0, Wrong: 1.0Classifier: class weka.classifiers.rules.OneR : Correct: 13.0, Wrong: 0.0Classifier: class weka.classifiers.rules.OneR : Correct: 12.0, Wrong: 0.0Classifier: class weka.classifiers.rules.OneR : Correct: 15.0, Wrong: 0.0Classifier: class weka.classifiers.rules.OneR : Correct: 14.0, Wrong: 0.0Classifier: class weka.classifiers.rules.OneR : Correct: 14.0, Wrong: 0.0Classifier: class weka.classifiers.rules.OneR : Correct: 14.0, Wrong: 0.0===================================================================Classifier: class weka.classifiers.trees.DecisionStump : Correct: 15.0, Wrong: 1.0Classifier: class weka.classifiers.trees.DecisionStump : Correct: 15.0, Wrong: 1.0Classifier: class weka.classifiers.trees.DecisionStump : Correct: 15.0, Wrong: 2.0Classifier: class weka.classifiers.trees.DecisionStump : Correct: 5.0, Wrong: 2.0Classifier: class weka.classifiers.trees.DecisionStump : Correct: 0.0, Wrong: 15.0Classifier: class weka.classifiers.trees.DecisionStump : Correct: 0.0, Wrong: 0.0Classifier: class weka.classifiers.trees.DecisionStump : Correct: 5.0, Wrong: 0.0Classifier: class weka.classifiers.trees.DecisionStump : Correct: 0.0, Wrong: 0.0Classifier: class weka.classifiers.trees.DecisionStump : Correct: 0.0, Wrong: 0.0Classifier: class weka.classifiers.trees.DecisionStump : Correct: 0.0, Wrong: 0.0===================================================================

回答:

在打印行中

System.out.println("Classifier: "+models[j].getClass()+" : Correct: "+predictions[j][i][0]+", Wrong: "+predictions[i][j][1]);      

以下部分

Wrong: "+predictions[i][j][1]);

应该改为

Wrong: "+predictions[j][i][1]);

你把 ji 调换了位置。

Related Posts

L1-L2正则化的不同系数

我想对网络的权重同时应用L1和L2正则化。然而,我找不…

使用scikit-learn的无监督方法将列表分类成不同组别,有没有办法?

我有一系列实例,每个实例都有一份列表,代表它所遵循的不…

f1_score metric in lightgbm

我想使用自定义指标f1_score来训练一个lgb模型…

通过相关系数矩阵进行特征选择

我在测试不同的算法时,如逻辑回归、高斯朴素贝叶斯、随机…

可以将机器学习库用于流式输入和输出吗?

已关闭。此问题需要更加聚焦。目前不接受回答。 想要改进…

在TensorFlow中,queue.dequeue_up_to()方法的用途是什么?

我对这个方法感到非常困惑,特别是当我发现这个令人费解的…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注