我正在使用SVM解决一个多标签分类任务,数据集中的X表示处理后图像的特征,Y表示6种自然元素(如山丘、云朵等)的存在情况,这些元素由二进制变量表示(不存在为0,存在为1)。这是训练和测试数据:
训练数据:https://s3.amazonaws.com/istreet-questions-us-east-1/418844/train.csv
测试数据:https://s3.amazonaws.com/istreet-questions-us-east-1/418844/test.csv
特征数量:294每个实例的标签数量:6
这是我用来训练模型的代码:
import csvimport numpy as nptrain = []test = []with open('/home/keerat/Desktop/train.csv') as trainfile: reader = csv.reader(trainfile) for row in reader: train.append(row)with open('/home/keerat/Desktop/test.csv') as testfile: reader = csv.reader(testfile) for row in reader: test.append(row)X = []y = []X_test = []# split data into X and yfor i in range(len(train)): X.append(train[i][0:294]) y.append(train[i][294:300])for i in range(len(test)): X_test.append(test[i][0:294])# convert list of strings to list of numfor i in range(len(X)): X[i] = [float(x) for x in X[i]]for j in range(len(y)): y[j] = [int(yy) for yy in y[i]]for i in range(len(X_test)): X_test[i] = [float(x) for x in X_test[i]]X = np.array(X)y = np.array(y)X_test = np.array(X_test)# define svm model for multi label classificationfrom sklearn.svm import SVCfrom sklearn import metricsfrom sklearn.multioutput import MultiOutputClassifiersvc=SVC() #Default hyperparametersn_samples, n_features = X.shapen_outputs = y.shape[1]multi_target_svc = MultiOutputClassifier(svc, n_jobs=-1)multi_target_svc.fit(X[:],y)
X和y的外观如下:
X:[[0.826575 0.843082 0.805944 ... 0.010919 0.011375 0.015069] [0.766867 0.669694 0.636238 ... 0.055661 0.079765 0.097522] [0.962784 0.975387 0.96395 ... 0.195177 0.221791 0.201402] ... [0.527828 0.588172 0.639713 ... 0.030422 0.004995 0.002626] [0.574357 0.598345 0.63484 ... 0.039915 0.075365 0.056335] [0.698135 0.732643 0.724918 ... 0.014463 0.04427 0.041442]]y: [[1 0 0 0 0 1] [1 0 0 0 0 1] [1 0 0 0 0 1] ... [1 0 0 0 0 1] [1 0 0 0 0 1] [1 0 0 0 0 1]]
模型的.fit()行抛出了标题中提到的错误。我已经检查过numpy.unique(y)-->[0 1]
,这意味着我有超过1个(准确地说是2个)类别可用。
谁能提供一些关于这里出了什么问题的信息吗?
回答:
如果将MultiOutputClassifier()
中的n_jobs
参数设置为1而不是-1,训练和测试过程会顺利进行。不知道具体原因是什么,但经过这一修改,sklearn中所有分类器的问题都得到了解决。