X, y = load_data(return_X_y=True)X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.3, random_state=123, shuffle=True)def sample(X,y):# 尝试的代码 train_index = sorted(np.random.permutation(len(X))) test_index = [i for i in range(0,len(X)) if i not in train_index]for i in range(0,len(X)):# 训练集和验证集的分割 x_trn, x_val = X[train_index], X[test_index] y_trn, y_val = y[train_inex], y[test_index]return x_trn , x_val, y_trn, y_val
然后调用它如下
sample(X_train, y_train)
填写代码以从训练数据中均匀地进行有放回抽样。抽样数据集的大小应等于训练数据集的大小。
回答:
根据作业的描述,这就是你所需要的。你随机选择索引,然后返回这些索引处的点。
def sample(X,y): picks = np.random.randint(0,len(X),len(X)) return X[picks], y[picks]