我在处理鸢尾花数据集的分类问题时,能够在原始数据集上创建一个配对图,设置hue='species'
后效果如下:
但是,当我将数据集分割成X_train和y_train后,如何在种类已经被分离的情况下继续使用hue
参数呢?
X = DATA.drop(['class'], axis = 'columns')y = DATA['class'].valuesX_train, X_test, y_train, y_test=train_test_split(X,y, test_size=0.20,random_state =42)gbl_pl=[]gbl_pl.append(('standard_scaler_gb',StandardScaler())) gblpq=Pipeline((gbl_pl))scaled_df=gblpq.fit_transform(X_train,y_train)sns.pairplot(data=scaled_df)plt.show()
输出
期望(类似于这种效果,但使用分割后的数据集且不包括测试数据)
回答:
你可以将y_train作为一列拼接到X_train中。
from matplotlib import pyplot as pltfrom sklearn.model_selection import train_test_splitimport seaborn as snsimport pandas as pdimport numpy as npiris = sns.load_dataset('iris')X = iris.drop(columns='species')y = iris['species']X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=42)sns.pairplot(data=pd.concat([X_train, y_train], axis=1), hue=y_train.name)