我是神经网络的新手。有人能帮我找出这段代码的错误吗?
from tensorflow.keras.models import Sequentialfrom tensorflow.keras.layers import Dense, Flatten, Conv2D, MaxPooling2Dfrom tensorflow.keras.losses import sparse_categorical_crossentropyfrom tensorflow.keras.optimizers import Adamfrom sklearn.model_selection import KFoldfrom numpy import loadtxtimport numpy as npimport pandas as pdfrom google.colab import filesuploaded = files.upload()dataset = loadtxt('mod_dfn.csv', delimiter=',')X = dataset[:,0:71]y = dataset[:,71]kfold = KFold(n_splits=10, shuffle=True)fold_no = 1for train, test in kfold.split(X, y): model = Sequential() model.add(Dense(12, input_dim=8, activation='relu')) model.add(Dense(8, activation='relu')) model.add(Dense(1, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) print('------------------------------------------------------------------------') print(f'Training for fold {fold_no} ...') history = model.fit(X[train], y[train], batch_size=10, epochs=150, verbose=0) scores = model.evaluate(X[test], y[test], verbose=0) print(f'Score for fold {fold_no}: {model.metrics_names[0]} of {scores[0]}; {model.metrics_names[1]} of {scores[1]*100}%') acc_per_fold.append(scores[1] * 100) loss_per_fold.append(scores[0]) fold_no = fold_no + 1
我收到了这个错误
------------------------------------------------------------------------Training for fold 1 ...---------------------------------------------------------------------------ValueError Traceback (most recent call last)<ipython-input-16-4ad6d644594b> in <module>() 17 18 # Fit data to model---> 19 history = model.fit(X[train], y[train], batch_size=10, epochs=150, verbose=0) 20 21 # Generate generalization metrics9 frames/usr/local/lib/python3.7/dist-packages/tensorflow/python/framework/func_graph.py in wrapper(*args, **kwargs) 992 except Exception as e: # pylint:disable=broad-except 993 if hasattr(e, "ag_error_metadata"):--> 994 raise e.ag_error_metadata.to_exception(e) 995 else: 996 raiseValueError: in user code: /usr/local/lib/python3.7/dist-packages/keras/engine/training.py:853 train_function * return step_function(self, iterator) /usr/local/lib/python3.7/dist-packages/keras/engine/training.py:842 step_function ** outputs = model.distribute_strategy.run(run_step, args=(data,)) /usr/local/lib/python3.7/dist-packages/tensorflow/python/distribute/distribute_lib.py:1286 run return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs) /usr/local/lib/python3.7/dist-packages/tensorflow/python/distribute/distribute_lib.py:2849 call_for_each_replica return self._call_for_each_replica(fn, args, kwargs) /usr/local/lib/python3.7/dist-packages/tensorflow/python/distribute/distribute_lib.py:3632 _call_for_each_replica return fn(*args, **kwargs) /usr/local/lib/python3.7/dist-packages/keras/engine/training.py:835 run_step ** outputs = model.train_step(data) /usr/local/lib/python3.7/dist-packages/keras/engine/training.py:787 train_step y_pred = self(x, training=True) /usr/local/lib/python3.7/dist-packages/keras/engine/base_layer.py:1020 __call__ input_spec.assert_input_compatibility(self.input_spec, inputs, self.name) /usr/local/lib/python3.7/dist-packages/keras/engine/input_spec.py:254 assert_input_compatibility ' but received input with shape ' + display_shape(x.shape)) ValueError: Input 0 of layer sequential is incompatible with the layer: expected axis -1 of input shape to have value 8 but received input with shape (None, 71)
回答:
来自评论
您传递的数据具有
71
个特征(X=[:,0:71])
,而您在第一层的输入特征中指定为8 (input_dim=8)
。请将输入维度改为input_dim=71
。如果您的最后一层输出为
1
作为二进制输出,那么Y的最后一维也应该为1
。(转述自Kaveh)