使用分类特征的CatBoost无法与Scikit-Learn的CalibratedCV一起工作

我尝试使用sklearnCalibratedClassifierCV来校准CatBoostClassifier模型的概率。模型在拟合时运行良好,但在使用校准后的模型进行预测时失败了。我已经尝试使用LGBMClassifier,因为它具有相同的categorical_features,并且运行良好。对于这个问题,有没有解决方案?我使用的代码如下:

from catboost import CatBoostClassifierfrom sklearn.calibration import CalibratedClassifierCVimport pandas as pdX, y = make_classification(n_samples=100, n_features=3,n_redundant=0, random_state=42)X=pd.DataFrame(X,columns=['a','b','c'])X['d'] = [1,2,3,4,5]*20model = CatBoostClassifier()model.fit(X,y,verbose=False,cat_features=[3])model_cat = CalibratedClassifierCV(base_estimator=model,cv='prefit')model_cat.fit(X,y)model_cat.predict(X)CatBoostError                             Traceback (most recent call last)/tmp/ipykernel_3228/1832915274.py in <module>----> 1 model_cat.predict(X)~/anaconda3/lib/python3.8/site-packages/sklearn/calibration.py in predict(self, X)    383         """    384         check_is_fitted(self)--> 385         return self.classes_[np.argmax(self.predict_proba(X), axis=1)]    386     387     def _more_tags(self):~/anaconda3/lib/python3.8/site-packages/sklearn/calibration.py in predict_proba(self, X)    360         mean_proba = np.zeros((X.shape[0], len(self.classes_)))    361         for calibrated_classifier in self.calibrated_classifiers_:--> 362             proba = calibrated_classifier.predict_proba(X)    363             mean_proba += proba    364 ~/anaconda3/lib/python3.8/site-packages/sklearn/calibration.py in predict_proba(self, X)    637         n_classes = len(self.classes)    638         pred_method = _get_prediction_method(self.base_estimator)--> 639         predictions = _compute_predictions(pred_method, X, n_classes)    640     641         label_encoder = LabelEncoder().fit(self.classes)~/anaconda3/lib/python3.8/site-packages/sklearn/calibration.py in _compute_predictions(pred_method, X, n_classes)    499         (X.shape[0], 1).    500     """--> 501     predictions = pred_method(X=X)    502     if hasattr(pred_method, '__name__'):    503         method_name = pred_method.__name__~/anaconda3/lib/python3.8/site-packages/catboost/core.py in predict_proba(self, X, ntree_start, ntree_end, thread_count, verbose, task_type)   4767                 with probability for every class for each object.   4768         """-> 4769         return self._predict(X, 'Probability', ntree_start, ntree_end, thread_count, verbose, 'predict_proba', task_type)   4770    4771 ~/anaconda3/lib/python3.8/site-packages/catboost/core.py in _predict(self, data, prediction_type, ntree_start, ntree_end, thread_count, verbose, parent_method_name, task_type)   2175         if verbose is None:   2176             verbose = False-> 2177         data, data_is_single_object = self._process_predict_input_data(data, parent_method_name, thread_count)   2178         self._validate_prediction_type(prediction_type)   2179 ~/anaconda3/lib/python3.8/site-packages/catboost/core.py in _process_predict_input_data(self, data, parent_method_name, thread_count, label)   2155         is_single_object = _is_data_single_object(data)   2156         if not isinstance(data, Pool):-> 2157             data = Pool(   2158                 data=[data] if is_single_object else data,   2159                 label=label,~/anaconda3/lib/python3.8/site-packages/catboost/core.py in __init__(self, data, label, cat_features, text_features, embedding_features, column_description, pairs, delimiter, has_header, ignore_csv_quoting, weight, group_id, group_weight, subgroup_id, pairs_weight, baseline, feature_names, thread_count, log_cout, log_cerr)    580                 elif isinstance(data, np.ndarray):    581                     if (data.dtype.kind == 'f') and (cat_features is not None) and (len(cat_features) > 0):--> 582                         raise CatBoostError(    583                             "'data' is numpy array of floating point numerical type, it means no categorical features,"    584                             " but 'cat_features' parameter specifies nonzero number of categorical features"CatBoostError: 'data' is numpy array of floating point numerical type, it means no categorical features, but 'cat_features' parameter specifies nonzero number of categorical features

我不知道这个问题是来自Scikit-Learn还是CatBoost,但我已经尝试在CatBoost的这里提出了这个问题。

感谢任何回应。我会非常感激的。


回答:

非常感谢catboostscikit-learn在改进两个模块性能和解决所有提出的问题上的努力。通过将catboostscikit-learn升级到1.x.x版本,这个问题得到了解决。

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注