在Python代码中更有意义地打印结果?

我在对数据集进行10折交叉验证的SVM分析,使用不同的Cgamma

from sklearn.datasets import load_digits, load_iris, load_breast_cancer, load_winefrom sklearn.model_selection import train_test_splitfrom sklearn.svm import SVCfrom sklearn.utils import shufflefrom sklearn import preprocessingfrom sklearn.preprocessing import MinMaxScalerfrom sklearn.model_selection import StratifiedKFoldfrom sklearn.metrics import accuracy_score, zero_one_loss, confusion_matriximport pandas as pdimport numpy as npz = pd.read_csv('/home/user/iris.csv', header=0)X = z.iloc[:, :-1]y = z.iloc[:, -1:]X = np.array(X)y = np.array(y)# 执行标准化处理scaler = preprocessing.MinMaxScaler()X_scaled = scaler.fit_transform(X)c = [0.1, 0.5]gamma_values = [1e-1, 1]     for z in c:    for v in gamma_values:         # 定义使用'rbf'核的SVM        svc = SVC(kernel='rbf',C=z, gamma=v, random_state=50)        skf = StratifiedKFold(n_splits=10, shuffle=True)        acc_score = []        #skf.get_n_splits(X, y)        for train_index, test_index in skf.split(X, y):            X_train, X_test = X_scaled[train_index], X_scaled[test_index]            y_train, y_test = y[train_index], y[test_index]            # 训练模型            svc.fit(X_train, np.ravel(y_train))            # 在测试数据上进行预测            y_pred = svc.predict(X_test)            # 获得模型的准确性得分            score = accuracy_score(y_test, y_pred)            acc_score.append(score)        print(np.array(acc_score))        #打印每个C值的准确性得分        print('Mean accuracy score: %0.3f' % np.array(acc_score).mean())

这会产生如下输出

[0.52 0.6  0.49 0.6  0.55 0.6  0.5  0.51 0.63 0.54]Mean accuracy score: 0.554[0.51 0.45 0.54 0.42 0.53 0.45 0.52 0.48 0.5  0.39]Mean accuracy score: 0.479[0.73 0.76 0.7  0.64 0.61 0.68 0.71 0.61 0.71 0.71]Mean accuracy score: 0.686[0.76 0.6  0.66 0.61 0.67 0.66 0.69 0.74 0.63 0.65]Mean accuracy score: 0.667

然而,我希望能更有意义地打印结果,如下所示:

[0.52 0.6  0.49 0.6  0.55 0.6  0.5  0.51 0.63 0.54]Mean accuracy score for (C=0.1,gamma=0.1): 0.554[0.51 0.45 0.54 0.42 0.53 0.45 0.52 0.48 0.5  0.39]Mean accuracy score (C=0.1, gamma = 1): 0.479[0.73 0.76 0.7  0.64 0.61 0.68 0.71 0.61 0.71 0.71]Mean accuracy score (C=0.5, gamma = 0.1): 0.686[0.76 0.6  0.66 0.61 0.67 0.66 0.69 0.74 0.63 0.65]Mean accuracy score (C=0.5, gamma = 1): 0.667

如何在现有代码中更有意义地打印结果?


回答:

尝试这样做:

# (1)print('Mean accuracy score (C=%0.1f, gamma=%0.1f): %0.3f' % (z, v, np.array(acc_score).mean()))# (2)print("Mean accuracy score (C={}, gamma={}): {}".format(z, v, np.array(acc_score).mean()))# (3)print("Mean accuracy score (C="+str(z)+", gamma="+str(v)+"): "+str(np.array(acc_score).mean()))

输出:

Mean accuracy score (C=0.1, gamma=0.1): 0.554

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注