我使用了极限学习机(ELM)模型进行预测,并使用K折交叉验证来验证模型的预测效果。但是执行以下代码后,我得到了这个错误信息:
KeyError: "None of [Int64Index([112, 113, 114, 115, 116, 117, 118, 119, 120, 121,\n ...\n 550, 551, 552, 553, 554, 555, 556, 557, 558, 559],\n dtype='int64', length=448)] are in the [columns]"
我该如何解决这个问题?问题出在哪里?代码如下:
dataset = pd.read_excel("un.xls") X=dataset.iloc[:,:-1] y=dataset.iloc[:,-1:] #----------Scaler---------- scaler = MinMaxScaler() scaler_X = MinMaxScaler() X=scaler.fit_transform(X) #---------------------- Divided the datset---------------------- X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=2) # Splits dataset into k consecutive folds (without shuffling by default). kfolds = KFold(n_splits=5, random_state=16, shuffle=False) for train_index, test_index in kfolds.split(X_train, y_train): X_train_folds, X_test_folds = X_train[train_index], X_train[test_index] y_train_folds, y_test_folds = y_train[train_index], y_train[test_index] # put all code in the for loop so that for every set of (X_train_folds, y_train_folds), the model is fitted. # call predict() for corresponding set of X_test_folds # put all code in the for loop so that for every set of (X_train_folds, y_train_folds), the model is fitted. # call predict() for corresponding set of X_test_folds #----------------------------(input size)------------- input_size = X_train.shape[1] hidden_size = 23#---------------------------(To fix the RESULT)-------seed =22 # can be any number, and the exact value does not matternp.random.seed(seed)#---------------------------(weights & biases)------------input_weights = np.random.normal(size=[input_size,hidden_size])biases = np.random.normal(size=[hidden_size])#----------------------(Activation Function)----------def relu(x): return np.maximum(x, 0, x)#--------------------------(Calculations)----------def hidden_nodes(X): G = np.dot(X, input_weights) G = G + biases H = relu(G) return H#Output weights output_weights = np.dot(pinv2(hidden_nodes(X_train)), y_train)#------------------------(Def prediction)---------def predict(X): out = hidden_nodes(X) out = np.dot(out, output_weights) return out#------------------------------------(Make_PREDICTION)--------------prediction = predict(X_test_folds)
错误信息如下:
raise KeyError(f”None of [{key}] are in the [{axis_name}]”)
KeyError: “None of [Int64Index([112, 113, 114, 115, 116, 117, 118, 119, 120, 121,\n …\n 550, 551, 552, 553, 554, 555, 556, 557, 558, 559],\n dtype=’int64′, length=448)] are in the [columns]”
回答:
你应该只使用train_test_split()
或KFold()
来分割数据。不要同时使用两者
正如KFold()
的文档所述:
你应该在KFold.split()
中仅使用X
。所以使用以下代码:
kfolds = KFold(n_splits=5, random_state=16, shuffle=False) for train_index, test_index in kfolds.split(X): X_train_folds, X_test_folds = X[train_index], X[test_index] y_train_folds, y_test_folds = y[train_index], y[test_index]
此外,删除所有X_train
和y_train
,因为它们不是必需的。
input_size = X.shape[1]def relu(x): return np.maximum(x, 0)output_weights = np.dot(pinv2(hidden_nodes(X_train_folds)), y_train_folds)
如果代码仍然因KFold()
而导致错误,你应该考虑使用train_test_split()
,并用train_test_split()
的变量替换KFold()
的训练和测试变量
对于train_test_split()
:
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=2)input_size = X_train.shape[1]def relu(x): return np.maximum(x, 0)output_weights = np.dot(pinv2(hidden_nodes(X_train)), y_train)prediction = predict(X_test)