我有一个函数,它会从huggingface加载预训练模型,并对其进行微调以进行情感分析,然后计算F1分数并返回结果。问题是当我多次调用这个函数并使用完全相同的参数时,它会返回完全相同的指标分数,这是预期的,除了第一次结果不同,这是怎么回事?
这是我的函数,基于huggingface的这个教程编写的:
import uuidimport numpy as npfrom datasets import ( load_dataset, load_metric, DatasetDict, concatenate_datasets)from transformers import ( AutoTokenizer, AutoModelForSequenceClassification, DataCollatorWithPadding, TrainingArguments, Trainer,)CHECKPOINT = "distilbert-base-uncased"SAVING_FOLDER = "sst2"def custom_train(datasets, checkpoint=CHECKPOINT, saving_folder=SAVING_FOLDER): model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2) tokenizer = AutoTokenizer.from_pretrained(checkpoint) def tokenize_function(example): return tokenizer(example["sentence"], truncation=True) tokenized_datasets = datasets.map(tokenize_function, batched=True) data_collator = DataCollatorWithPadding(tokenizer=tokenizer) saving_folder = f"{SAVING_FOLDER}_{str(uuid.uuid1())}" training_args = TrainingArguments(saving_folder) trainer = Trainer( model, training_args, train_dataset=tokenized_datasets["train"], eval_dataset=tokenized_datasets["validation"], data_collator=data_collator, tokenizer=tokenizer, ) trainer.train() predictions = trainer.predict(tokenized_datasets["test"]) print(predictions.predictions.shape, predictions.label_ids.shape) preds = np.argmax(predictions.predictions, axis=-1) metric_fun = load_metric("f1") metric_result = metric_fun.compute(predictions=preds, references=predictions.label_ids) return metric_result
然后我会用相同的数据集多次运行这个函数,并每次附加返回的F1分数结果:
raw_datasets = load_dataset("glue", "sst2")small_datasets = DatasetDict({ "train": raw_datasets["train"].select(range(100)).flatten_indices(), "validation": raw_datasets["validation"].select(range(100)).flatten_indices(), "test": raw_datasets["validation"].select(range(100, 200)).flatten_indices(),})results = []for i in range(4): result = custom_train(small_datasets) results.append(result)
然后当我检查结果列表时:
[{'f1': 0.7755102040816325}, {'f1': 0.5797101449275361}, {'f1': 0.5797101449275361}, {'f1': 0.5797101449275361}]
可能想到的是,当我加载预训练模型时,头部会被随机权重初始化,这就是结果不同的原因,如果是这样,为什么只有第一次不同,而其他结果完全相同?
回答:
Sylvain Gugger 在这里回答了这个问题: https://discuss.huggingface.co/t/multiple-training-will-give-exactly-the-same-result-except-for-the-first-time/8493
您需要在实例化模型之前设置种子,否则随机头部不会以相同的方式初始化,这就是为什么第一次运行总是不同的。后续的运行都相同,因为种子已在训练方法中由Trainer设置。要设置种子:
from transformers import set_seedset_seed(42)