XGBClassifier ValueError: 操作数无法一起广播,形状为(2557,) (8,) (2557,)

我正在进行一个文本分类项目。

在探索不同的分类器时,我遇到了XGBClassifier

我的分类任务是多类分类。当我尝试对分类器进行评分时,出现了上述错误 – 我猜想需要进行一些形状调整,但我无法理解为什么。这对我来说很奇怪,因为其他分类器都能正常工作(即使是这个分类器使用默认参数时也是如此)

这是我代码中的相关部分:

algorithms = [        svm.LinearSVC(),  # <<<=== 有效        linear_model.RidgeClassifier(), # <<<=== 有效        XGBClassifier(),  # <<<=== 有效        XGBClassifier(objective='multi:softprob', num_class=len(groups_count_dict), eval_metric='merror')  # <<<=== 无效]def train(algorithm, X_train, y_train):    model = Pipeline([               ('vect', transformer),        ('classifier', OneVsRestClassifier(algorithm))    ])    model.fit(X_train, y_train)    return modelscore_dict = {}algorithm_to_model_dict = {}for algorithm in algorithms:    print()    print(f'trying {algorithm}')    model = train(algorithm, X_train, y_train)    score = model.score(X_test, y_test)    score_dict[algorithm] = int(score * 100)    algorithm_to_model_dict[algorithm] = model    sorted_score_dict = {k: v for k, v in sorted(score_dict.items(), key=lambda item: item[1])}for classifier, score in sorted_score_dict.items():    print(f'{classifier.__class__.__name__}: score is {score}%')

再次显示错误:

ValueError: operands could not be broadcast together with shapes (2557,) (8,) (2557,)

不确定是否相关,但我还是要提一下 – 我的transformer是通过以下方式创建的:

tuples = []tfidf_kwargs = {'ngram_range': (1, 2), 'stop_words': 'english', 'sublinear_tf': True}for col in list(features.columns):    tuples.append((f'vec_{col}', TfidfVectorizer(**tfidf_kwargs), col))transformer = ColumnTransformer(tuples, remainder='passthrough')

提前感谢

编辑:

添加完整的跟踪信息:

---------------------------------------------------------------------------ValueError                                Traceback (most recent call last)<ipython-input-15-576cd62f3df0> in <module>     84     print(f'trying {algorithm}')     85     model = train(algorithm, X_train, y_train)---> 86     score = model.score(X_test, y_test)     87     score_dict[algorithm] = int(score * 100)     88     algorithm_to_model_dict[algorithm] = model/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/sklearn/utils/metaestimators.py in <lambda>(*args, **kwargs)    118     119         # lambda, but not partial, allows help() to work with update_wrapper--> 120         out = lambda *args, **kwargs: self.fn(obj, *args, **kwargs)    121         # update the docstring of the returned function    122         update_wrapper(out, self.fn)/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/sklearn/pipeline.py in score(self, X, y, sample_weight)    620         if sample_weight is not None:    621             score_params['sample_weight'] = sample_weight--> 622         return self.steps[-1][-1].score(Xt, y, **score_params)    623     624     @property/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/sklearn/base.py in score(self, X, y, sample_weight)    498         """    499         from .metrics import accuracy_score--> 500         return accuracy_score(y, self.predict(X), sample_weight=sample_weight)    501     502     def _more_tags(self):/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/sklearn/multiclass.py in predict(self, X)    365             for i, e in enumerate(self.estimators_):    366                 pred = _predict_binary(e, X)--> 367                 np.maximum(maxima, pred, out=maxima)    368                 argmaxima[maxima == pred] = i    369             return self.classes_[argmaxima]ValueError: operands could not be broadcast together with shapes (2557,) (8,) (2557,) 

打印X_testy_test的形状得到:(2557, 12) (2557,)

我能够理解(8,)的来源 – 它是groups_count_dict的长度


回答:

结果发现解决方案是从管道中移除OneVsRestClassifier的使用

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注