为什么我的Keras模型无法使用model.summary()?

我编写了以下Keras模型:

input = Input(shape=(train.shape[1:]))x = layers.Conv1D(filters=32, padding="valid", activation="relu", strides=1, kernel_size=1)(input)x = layers.Conv1D(filters=32, padding="valid", activation="relu", strides=1, kernel_size=1)(x)x = layers.Conv1D(filters=32, padding="valid", activation="relu", strides=1, kernel_size=1)(x)x = layers.GlobalMaxPooling1D()(x)x = layers.Dense(1024, activation="relu")(x)x = layers.Dropout(0.1)(x)x = layers.Dense(1024, activation='relu')(x)x = layers.Dropout(0.1)(x)predictions = layers.Dense(1,kernel_initializer='normal')(x)model = tf.keras.Model(inputs=[protein_input], outputs=[predictions])plot_model(model,"model.png", show_dtype=True, show_shapes=True, show_layer_names=True)model.summary()

这会生成以下表格:

_________________________________________________________________Layer (type)                 Output Shape              Param #   =================================================================Total params: 1,086,593Trainable params: 1,086,593Non-trainable params: 0_________________________________________________________________

plot_model() 同样没有生成图表。

模型可以编译,并且我可以运行 model.fit

model.compile(loss=tf.keras.losses.MeanSquaredError(), optimizer="adam", metrics=['mean_absolute_error'])epochs=100history = model.fit(x=[train],y=log_training_Kd_labels,                                validation_data=([val],log_validation_Kd_labels),                                epochs=epochs,                                batch_size=100) 

但我不确定是否有任何学习在发生。谁能告诉我这是为什么?


回答:

你可能混用了Keras和TensorFlow库。由于TensorFlow实现了Keras库,这种混用是开发者常犯的错误,他们同时导入Keras和TensorFlow,并随机使用它们,这会导致一些奇怪的行为。

在整个代码中只使用 import tensorflow.kerasimport keras 即可。

例如,如果我这样编码(随机使用两个库):

import keras                                #导入kerasimport tensorflow as tffrom tensorflow.keras.layers import Dense   #从tensorflow.keras导入层from tensorflow.keras import Inputinput = Input(shape = (20,))x = Dense(30, name = 'dense1')(input)x = Dense(20, name = 'dense2')(x)output = Dense(1)(x)model = keras.models.Model(inputs = input ,outputs = output)model.compile(loss = 'mse', optimizer = 'adam')model.summary()

输出将是:

Model: "model"_________________________________________________________________Layer (type)                 Output Shape              Param #   =================================================================Total params: 1,271Trainable params: 1,271Non-trainable params: 0_________________________________________________________________

但如果我修改导入方式,只使用 tensorflow.keras 而不使用 keras,像这样:

import tensorflow as tffrom tensorflow.keras.layers import Densefrom tensorflow.keras import Inputfrom tensorflow.keras.models import Modelinput = Input(shape = (20,))x = Dense(30, name = 'dense1')(input)x = Dense(20, name = 'dense2')(x)output = Dense(1)(x)model = Model(inputs = input ,outputs = output)model.compile(loss = 'mse', optimizer = 'adam')model.summary()

我将得到这样的输出:

Model: "model"_________________________________________________________________Layer (type)                 Output Shape              Param #   =================================================================input_3 (InputLayer)         [(None, 20)]              0         _________________________________________________________________dense1 (Dense)               (None, 30)                630       _________________________________________________________________dense2 (Dense)               (None, 20)                620       _________________________________________________________________dense_2 (Dense)              (None, 1)                 21        =================================================================Total params: 1,271Trainable params: 1,271Non-trainable params: 0_________________________________________________________________

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注