我正在使用pytorch
实现一个简单的DQN算法,以解决gym
中的CartPole环境。我已经调试了一段时间,但无法找出模型为何无法学习的原因。
观察:
- 使用
SmoothL1Loss
的表现比MSEloss
差,但两种损失都在增加 - 在
Adam
中使用较小的LR
不起作用,我已经测试了0.0001、0.00025、0.0005和默认值
笔记:
- 我已经单独调试了算法的各个部分,可以相当有信心地说问题出在
learn
函数中。我在想这个错误是否是因为我误解了detach
在pytorch中的用法,或者是我在使用框架时犯了其他错误。 - 我尽量严格按照原始论文(见上文链接)来实现
参考资料:
import torch as Timport torch.nn as nnimport torch.nn.functional as Fimport gymimport numpy as npclass ReplayBuffer: def __init__(self, mem_size, input_shape, output_shape): self.mem_counter = 0 self.mem_size = mem_size self.input_shape = input_shape self.actions = np.zeros(mem_size) self.states = np.zeros((mem_size, *input_shape)) self.states_ = np.zeros((mem_size, *input_shape)) self.rewards = np.zeros(mem_size) self.terminals = np.zeros(mem_size) def sample(self, batch_size): indices = np.random.choice(self.mem_size, batch_size) return self.actions[indices], self.states[indices], \ self.states_[indices], self.rewards[indices], \ self.terminals[indices] def store(self, action, state, state_, reward, terminal): index = self.mem_counter % self.mem_size self.actions[index] = action self.states[index] = state self.states_[index] = state_ self.rewards[index] = reward self.terminals[index] = terminal self.mem_counter += 1class DeepQN(nn.Module): def __init__(self, input_shape, output_shape, hidden_layer_dims): super(DeepQN, self).__init__() self.input_shape = input_shape self.output_shape = output_shape layers = [] layers.append(nn.Linear(*input_shape, hidden_layer_dims[0])) for index, dim in enumerate(hidden_layer_dims[1:]): layers.append(nn.Linear(hidden_layer_dims[index], dim)) layers.append(nn.Linear(hidden_layer_dims[-1], *output_shape)) self.layers = nn.ModuleList(layers) self.loss = nn.MSELoss() self.optimizer = T.optim.Adam(self.parameters()) def forward(self, states): for layer in self.layers[:-1]: states = F.relu(layer(states)) return self.layers[-1](states) def learn(self, predictions, targets): self.optimizer.zero_grad() loss = self.loss(input=predictions, target=targets) loss.backward() self.optimizer.step() return lossclass Agent: def __init__(self, epsilon, gamma, input_shape, output_shape): self.input_shape = input_shape self.output_shape = output_shape self.epsilon = epsilon self.gamma = gamma self.q_eval = DeepQN(input_shape, output_shape, [64]) self.memory = ReplayBuffer(10000, input_shape, output_shape) self.batch_size = 32 self.learn_step = 0 def move(self, state): if np.random.random() < self.epsilon: return np.random.choice(*self.output_shape) else: self.q_eval.eval() state = T.tensor([state]).float() action = self.q_eval(state).max(axis=1)[1] return action.item() def sample(self): actions, states, states_, rewards, terminals = \ self.memory.sample(self.batch_size) actions = T.tensor(actions).long() states = T.tensor(states).float() states_ = T.tensor(states_).float() rewards = T.tensor(rewards).view(self.batch_size).float() terminals = T.tensor(terminals).view(self.batch_size).long() return actions, states, states_, rewards, terminals def learn(self, state, action, state_, reward, done): self.memory.store(action, state, state_, reward, done) if self.memory.mem_counter < self.batch_size: return self.q_eval.train() self.learn_step += 1 actions, states, states_, rewards, terminals = self.sample() indices = np.arange(self.batch_size) q_eval = self.q_eval(states)[indices, actions] q_next = self.q_eval(states_).detach() q_target = rewards + self.gamma * q_next.max(axis=1)[0] * (1 - terminals) loss = self.q_eval.learn(q_eval, q_target) self.epsilon *= 0.9 if self.epsilon > 0.1 else 1.0 return loss.item()def learn(env, agent, episodes=500): print('Episode: Mean Reward: Last Loss: Mean Step') rewards = [] losses = [0] steps = [] num_episodes = episodes for episode in range(num_episodes): done = False state = env.reset() total_reward = 0 n_steps = 0 while not done: action = agent.move(state) state_, reward, done, _ = env.step(action) loss = agent.learn(state, action, state_, reward, done) state = state_ total_reward += reward n_steps += 1 if loss: losses.append(loss) rewards.append(total_reward) steps.append(n_steps) if episode % (episodes // 10) == 0 and episode != 0: print(f'{episode:5d} : {np.mean(rewards):5.2f} ' f': {np.mean(losses):5.2f}: {np.mean(steps):5.2f}') rewards = [] losses = [0] steps = [] print(f'{episode:5d} : {np.mean(rewards):5.2f} ' f': {np.mean(losses):5.2f}: {np.mean(steps):5.2f}') return losses, rewardsif __name__ == '__main__': env = gym.make('CartPole-v1') agent = Agent(1.0, 1.0, env.observation_space.shape, [env.action_space.n]) learn(env, agent, 500)
回答:
我认为主要问题在于折扣因子,即gamma。你将其设置为1.0,这意味着你对未来的奖励和当前的奖励赋予了相同的权重。在强化学习中,我们通常更关心即时奖励而不是未来的奖励,因此gamma应该始终小于1。
为了尝试,我将gamma
设置为0.99,并运行了你的代码:
Episode: Mean Reward: Last Loss: Mean Step 100 : 34.80 : 0.34: 34.80 200 : 40.42 : 0.63: 40.42 300 : 65.58 : 1.78: 65.58 400 : 212.06 : 9.84: 212.06 500 : 407.79 : 19.49: 407.79
如你所见,损失仍然在增加(即使没有之前那么多),但奖励也在增加。你应该考虑到这里的损失并不是衡量性能的好指标,因为你有一个移动的目标。你可以通过使用目标网络来减少目标的不稳定性。通过额外的参数调整和目标网络,可能可以使损失更加稳定。
此外,一般来说,在强化学习中,损失值不如在监督学习中那么重要;损失的减少并不总是意味着性能的提升,反之亦然。
问题在于Q目标在训练步骤中是不断变化的;随着代理的进行,预测正确的奖励总和变得极其困难(例如,探索更多的状态和奖励意味着更高的奖励方差),因此损失增加。在更复杂的环境中(更多的状态、变化的奖励等),这一点更加明显。
与此同时,Q网络在近似每个动作的Q值方面变得越来越好,因此奖励(可能会)增加。