如何将TensorFlow模型优化用于TPU?

我一直在尝试使用Colab提供的TPU,因为据说它速度很快,但似乎无法成功。我使用的是TensorFlow 2.4.1。我尝试按照这个https://www.tensorflow.org/guide/tpu进行操作,但没有成功。这里是我的代码https://colab.research.google.com/drive/1GGtwBicZF0qtp57ioD7g0JdE1iBXL85J?usp=sharing

%tensorflow_version 2.xfrom __future__ import absolute_import, division, print_function, unicode_literalsimport osfrom pathlib import Pathimport tensorflow as tfimport numpy as npimport pandas as pdimport tensorflow_datasets as tfdsCSV_COLUMN_NAMES = ['SepalLength', 'SepalWidth', 'PetalLength', 'PetalWidth', 'Species']SPECIES = ['Setosa', 'Versicolor', 'Virginica']train_path = tf.keras.utils.get_file(    "iris_training.csv", "https://storage.googleapis.com/download.tensorflow.org/data/iris_training.csv")train = pd.read_csv(train_path, names=CSV_COLUMN_NAMES, header=0)train_y = train.pop('Species')nb_classes=3 # we have three types of flowersX=np.array(train)Y=np.eye(nb_classes)[np.array(train_y)]clf = tf.keras.models.Sequential([    tf.keras.layers.Dense(30, activation='relu'),    tf.keras.layers.Dense(10, activation='relu'),    tf.keras.layers.Dense(3, activation='softmax'),])clf.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])history = clf.fit(X,Y, batch_size=32,epochs=10, validation_split=0.1)clf.save("numeric_values-model.h5")

这是我尝试转换它的代码

resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu='')tf.config.experimental_connect_to_cluster(resolver)# This is the TPU initialization code that has to be at the beginning.tf.tpu.experimental.initialize_tpu_system(resolver)print("All devices: ", tf.config.list_logical_devices('TPU'))a = tf.constant([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])b = tf.constant([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]])with tf.device('/TPU:0'):  c = tf.matmul(a, b)print("c device: ", c.device)print(c)strategy = tf.distribute.TPUStrategy(resolver)@tf.functiondef matmul_fn(x, y):  z = tf.matmul(x, y)  return zz = strategy.run(matmul_fn, args=(a, b))print(z)@tf.functiondef matmul_fn(x, y):  z = tf.matmul(x, y)  return zz = strategy.run(matmul_fn, args=(a, b))print(z)def create_model():  return tf.keras.models.Sequential([    tf.keras.layers.Dense(30, activation='relu'),    tf.keras.layers.Dense(10, activation='relu'),    tf.keras.layers.Dense(3, activation='softmax')])def get_dataset(batch_size, is_training=True):  split = 'train' if is_training else 'test'  dataset, info = tfds.load(name='mnist', split=split, with_info=True,                            as_supervised=True, try_gcs=True)  # Only shuffle and repeat the dataset in training. The advantage to have a  # infinite dataset for training is to avoid the potential last partial batch  # in each epoch, so users don't need to think about scaling the gradients  # based on the actual batch size.  if is_training:    dataset = dataset.shuffle(10000)    dataset = dataset.repeat()  dataset = dataset.batch(batch_size)  return datasetwith strategy.scope():  model = create_model()  model.compile(optimizer='adam',                loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),                metrics=['sparse_categorical_accuracy'])batch_size = 200steps_per_epoch = 60000 // batch_sizevalidation_steps = 10000 // batch_sizetrain_dataset = get_dataset(batch_size, is_training=True)test_dataset = get_dataset(batch_size, is_training=False)model.fit(train_dataset,          epochs=5,          steps_per_epoch=steps_per_epoch,          validation_data=test_dataset,           validation_steps=validation_steps)

回答:

您提到的代码片段出现了以下错误信息:

  (0) Invalid argument: {{function_node __inference_train_function_10150}} Compilation failure: Incompatible shapes: [25,1] vs. [25,28,28]

这意味着在您的输入数据和模型之间存在形状不匹配的问题。

这里最简单的解决方案是参考TensorFlow官方模型园区的MNIST模型(它也使用了TFDS对MNIST进行简单的模型处理),找出您的代码与之有何不同之处。

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注