XGBoost预测概率的推理性能缓慢

我在相同的数据集上使用Scikit-learn和XGBoost训练了两个梯度提升模型。

Scikit-learn模型

GradientBoostingClassifier(    n_estimators=5,    learning_rate=0.17,    max_depth=5,    verbose=2)

XGBoost模型

XGBClassifier(    n_estimators=5,    learning_rate=0.17,    max_depth=5,    verbosity=2,    eval_metric="logloss")

然后我检查了推理性能:

  • XGBoost: 每次循环9.7毫秒 ± 84.6微秒
  • Scikit-learn: 每次循环426微秒 ± 12.5微秒

为什么XGBoost这么慢?


回答:

“为什么XGBoost这么慢?”: XGBClassifier() 是XGBoost的scikit-learn API接口(更多详情请见 https://xgboost.readthedocs.io/en/latest/python/python_api.html#xgboost.XGBClassifier)。如果你直接调用函数(不通过API)会更快。为了比较两个函数的性能,最好直接调用每个函数,而不是一个直接调用,一个通过API调用。这里有一个例子:

# benchmark_xgboost_vs_sklearn.py# Adapted from `xgboost_test.py` by Jacob Schreiber # (https://gist.github.com/jmschrei/6b447aada61d631544cd)"""Benchmarking scripts for XGBoost versus sklearn (time and accuracy)"""import timeimport randomimport numpy as npimport xgboost as xgbfrom sklearn.ensemble import GradientBoostingClassifierrandom.seed(0)np.random.seed(0)def make_dataset(n=500, d=10, c=2, z=2):    """    Make a dataset of size n, with d dimensions and m classes,    with a distance of z in each dimension, making each feature equally    informative.    """    # Generate our data and our labels    X = np.concatenate([np.random.randn(n, d) + z*i for i in range(c)])    y = np.concatenate([np.ones(n) * i for i in range(c)])    # Generate a random indexing    idx = np.arange(n*c)    np.random.shuffle(idx)    # Randomize the dataset, preserving data-label pairing    X = X[idx]    y = y[idx]    # Return x_train, x_test, y_train, y_test    return X[::2], X[1::2], y[::2], y[1::2]def main():    """    Run SKLearn, and then run xgboost,    then xgboost via SKLearn XGBClassifier API wrapper    """    # Generate the dataset    X_train, X_test, y_train, y_test = make_dataset(10, z=100)    n_estimators=5    max_depth=5    learning_rate=0.17    # sklearn first    tic = time.time()    clf = GradientBoostingClassifier(n_estimators=n_estimators,        max_depth=max_depth, learning_rate=learning_rate)    clf.fit(X_train, y_train)    print("SKLearn GBClassifier: {}s".format(time.time() - tic))    print("Acc: {}".format(clf.score(X_test, y_test)))    print(y_test.sum())    print(clf.predict(X_test))    # Convert the data to DMatrix for xgboost    dtrain = xgb.DMatrix(X_train, label=y_train)    dtest  = xgb.DMatrix(X_test, label=y_test)    # Loop through multiple thread numbers for xgboost    for threads in 1, 2, 4:        # xgboost's sklearn interface        tic = time.time()        clf = xgb.XGBModel(n_estimators=n_estimators, max_depth=max_depth,            learning_rate=learning_rate, nthread=threads)        clf.fit(X_train, y_train)        print("SKLearn XGBoost API Time: {}s".format(time.time() - tic))        preds = np.round( clf.predict(X_test) )        acc = 1. - (np.abs(preds - y_test).sum()  / y_test.shape[0])        print("Acc: {}".format( acc ))        print("{} threads: ".format( threads ))        tic = time.time()        param = {                  'max_depth' : max_depth,                        'eta' : 0.1,                      'silent': 1,                   'objective':'binary:logistic',                     'nthread': threads                }        bst = xgb.train( param, dtrain, n_estimators,            [(dtest, 'eval'), (dtrain, 'train')] )        print("XGBoost (no wrapper) Time: {}s".format(time.time() - tic))        preds = np.round(bst.predict(dtest) )        acc = 1. - (np.abs(preds - y_test).sum() / y_test.shape[0])        print("Acc: {}".format(acc))if __name__ == '__main__':    main()

总结结果:

sklearn.ensemble.GradientBoostingClassifier()

  • 时间: 0.003237009048461914秒
  • 准确率: 1.0

scikit-learn的XGBoost API封装XGBClassifier()

  • 时间: 0.3436141014099121秒
  • 准确率: 1.0

XGBoost(无封装)xgb.train()

  • 时间: 0.0028612613677978516秒
  • 准确率: 1.0

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注