我在将Spark版本从2.4.5升级到3.0.1时,无法再加载使用”DecisionTreeClassifier”阶段的PipelineModel对象。
在我的代码中,我加载了多个PipelineModel,所有使用阶段[“CountVectorizer_[uid]”, “LinearSVC_[uid]”]的PipelineModel都能正常加载,而使用阶段[“CountVectorizer_[uid]”,”DecisionTreeClassifier_[uid]”]的模型则会抛出以下异常:
AnalysisException: 无法解析’
rawCount
‘,给定输入列为:[gain, id, impurity, impurityStats, leftChild, prediction, rightChild,split]
这是我使用的代码和完整的堆栈跟踪:
from pyspark.ml.pipeline import PipelineModelPipelineModel.load("/path/to/model")AnalysisException Traceback (most recent call last)<command-1278858167154148> in <module>----> 1 RalentModel = PipelineModel.load(MODELES_ATTRIBUTS + "RalentModel_DT")/databricks/spark/python/pyspark/ml/util.py in load(cls, path) 368 def load(cls, path): 369 """Reads an ML instance from the input path, a shortcut of `read().load(path)`."""--> 370 return cls.read().load(path) 371 372 /databricks/spark/python/pyspark/ml/pipeline.py in load(self, path) 289 metadata = DefaultParamsReader.loadMetadata(path, self.sc) 290 if 'language' not in metadata['paramMap'] or metadata['paramMap']['language'] != 'Python':--> 291 return JavaMLReader(self.cls).load(path) 292 else: 293 uid, stages = PipelineSharedReadWrite.load(metadata, self.sc, path)/databricks/spark/python/pyspark/ml/util.py in load(self, path) 318 if not isinstance(path, basestring): 319 raise TypeError("path should be a basestring, got type %s" % type(path))--> 320 java_obj = self._jread.load(path) 321 if not hasattr(self._clazz, "_from_java"): 322 raise NotImplementedError("This Java ML type cannot be loaded into Python currently: %r"/databricks/spark/python/lib/py4j-0.10.9-src.zip/py4j/java_gateway.py in __call__(self, *args) 1303 answer = self.gateway_client.send_command(command) 1304 return_value = get_return_value(-> 1305 answer, self.gateway_client, self.target_id, self.name) 1306 1307 for temp_arg in temp_args:/databricks/spark/python/pyspark/sql/utils.py in deco(*a, **kw) 131 # Hide where the exception came from that shows a non-Pythonic 132 # JVM exception message.--> 133 raise_from(converted) 134 else: 135 raise/databricks/spark/python/pyspark/sql/utils.py in raise_from(e)AnalysisException: cannot resolve '`rawCount`' given input columns: [gain, id, impurity, impurityStats, leftChild, prediction, rightChild, split];
这些Pipeline模型是使用Spark 2.4.3保存的,我可以使用Spark 2.4.5正常加载它们。
我尝试进一步调查并单独加载每个阶段。使用以下代码加载CountVectorizerModel:
from pyspark.ml.feature import CountVectorizerModelCountVectorizerModel.read().load("/path/to/model/stages/0_CountVectorizer_efce893314a9")
可以得到一个CountVectorizerModel,因此这是可行的,但我的代码在尝试加载DecisionTreeClassificationModel时失败:
DecisionTreeClassificationModel.read().load("/path/to/model/stages/1_DecisionTreeClassifier_4d2a76c565b0")AnalysisException: cannot resolve '`rawCount`' given input columns: [gain, id, impurity, impurityStats, leftChild, prediction, rightChild, split];
这是我的决策树分类器的”data”内容:
spark.read.parquet("/path/to/model/stages/1_DecisionTreeClassifier_4d2a76c565b0/data").show()+---+----------+--------------------+-------------+--------------------+---------+----------+----------------+| id|prediction| impurity|impurityStats| gain|leftChild|rightChild| split|+---+----------+--------------------+-------------+--------------------+---------+----------+----------------+| 0| 0.0| 0.3926234384295062| [90.0, 33.0]| 0.16011830963990054| 1| 16|[190, [0.5], -1]|| 1| 0.0| 0.2672722508516028| [90.0, 17.0]| 0.11434106988303855| 2| 15|[512, [0.5], -1]|| 2| 0.0| 0.1652892561983472| [90.0, 9.0]| 0.06959547629404085| 3| 14|[583, [0.5], -1]|| 3| 0.0| 0.09972299168975082| [90.0, 5.0]|0.026984966852376356| 4| 11|[480, [0.5], -1]|| 4| 0.0|0.043933846736523306| [87.0, 2.0]|0.021717299239076976| 5| 10|[555, [1.5], -1]|| 5| 0.0|0.022469008264462766| [87.0, 1.0]|0.011105371900826402| 6| 7|[833, [0.5], -1]|| 6| 0.0| 0.0| [86.0, 0.0]| -1.0| -1| -1| [-1, [], -1]|| 7| 0.0| 0.5| [1.0, 1.0]| 0.5| 8| 9| [0, [0.5], -1]|| 8| 0.0| 0.0| [1.0, 0.0]| -1.0| -1| -1| [-1, [], -1]|| 9| 1.0| 0.0| [0.0, 1.0]| -1.0| -1| -1| [-1, [], -1]|| 10| 1.0| 0.0| [0.0, 1.0]| -1.0| -1| -1| [-1, [], -1]|| 11| 0.0| 0.5| [3.0, 3.0]| 0.5| 12| 13| [14, [1.5], -1]|| 12| 0.0| 0.0| [3.0, 0.0]| -1.0| -1| -1| [-1, [], -1]|| 13| 1.0| 0.0| [0.0, 3.0]| -1.0| -1| -1| [-1, [], -1]|| 14| 1.0| 0.0| [0.0, 4.0]| -1.0| -1| -1| [-1, [], -1]|| 15| 1.0| 0.0| [0.0, 8.0]| -1.0| -1| -1| [-1, [], -1]|| 16| 1.0| 0.0| [0.0, 16.0]| -1.0| -1| -1| [-1, [], -1]|+---+----------+--------------------+-------------+--------------------+---------+----------+----------------+
回答:
这是一个错误,我在这里提交了一个问题:https://issues.apache.org/jira/browse/SPARK-33398,它在这个PR中得到了解决:https://github.com/apache/spark/pull/30889