我正在按照Keras中构建自编码器的教程学习MNIST手写数字识别。以下是代码:
input_img = Input(shape=(28, 28, 1))  # 如果使用`channels_first`图像数据格式,请调整此处x = Conv2D(16, (3, 3), activation='relu', padding='same')(input_img)x = MaxPooling2D((2, 2), padding='same')(x)x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)x = MaxPooling2D((2, 2), padding='same')(x)x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)encoded = MaxPooling2D((2, 2), padding='same')(x)# 此时表示为(4, 4, 8),即128维x = Conv2D(8, (3, 3), activation='relu', padding='same')(encoded)x = UpSampling2D((2, 2))(x)x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)x = UpSampling2D((2, 2))(x)x = Conv2D(16, (3, 3), activation='relu')(x)x = UpSampling2D((2, 2))(x)decoded = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(x)autoencoder = Model(input_img, decoded)autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy')
在加载Mnist数据集并训练我们的模型后,我们将在这里绘制原始和重建的图像
decoded_imgs = autoencoder.predict(x_test)n = 10plt.figure(figsize=(20, 4))for i in range(n):    # 显示原始图像    ax = plt.subplot(2, n, i)    plt.imshow(x_test[i].reshape(28, 28))    plt.gray()    ax.get_xaxis().set_visible(False)    ax.get_yaxis().set_visible(False)    # 显示重建图像    ax = plt.subplot(2, n, i + n)    plt.imshow(decoded_imgs[i].reshape(28, 28))    plt.gray()    ax.get_xaxis().set_visible(False)    ax.get_yaxis().set_visible(False)plt.show()
我搜索了很多试图解决这个问题但没有找到解决方案,以下是显示的错误:
    ---------------------------------------------------------------------------ValueError                                Traceback (most recent call last)<ipython-input-35-d0a536786436> in <module>()      5 for i in range(n):      6     # display original----> 7     ax = plt.subplot(2, n, i)      8     plt.imshow(x_test[i].reshape(28, 28))      9     plt.gray()2 frames/usr/local/lib/python3.6/dist-packages/matplotlib/axes/_subplots.py in __init__(self, fig, *args, **kwargs)     64                 if num < 1 or num > rows*cols:     65                     raise ValueError(---> 66                         f"num must be 1 <= num <= {rows*cols}, not {num}")     67                 self._subplotspec = GridSpec(     68                         rows, cols, figure=self.figure)[int(num) - 1]ValueError: num must be 1 <= num <= 20, not 0<Figure size 1440x288 with 0 Axes>
回答:
在第一次循环中,i==0,因为range(10)是[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]。你不能使用0作为子图的索引,这会导致该错误。你应该在plt.subplot()中使用i+1来获得正确的轴。