自定义估算器无法被cross_val_score深度复制

我自己实现了一个自定义估算器,但我无法使用cross_val_score()函数,我认为这可能与我的predict()方法有关。以下是完整的错误跟踪信息:

    Traceback (most recent call last):  File "/Users/joann/Desktop/Implementações ML/Adaboost Classifier/test.py", line 30, in <module>    ada2_score = cross_val_score(ada_2, X, y, cv=5)  File "/Users/joann/opt/anaconda3/lib/python3.7/site-packages/sklearn/model_selection/_validation.py", line 390, in cross_val_score    error_score=error_score)  File "/Users/joann/opt/anaconda3/lib/python3.7/site-packages/sklearn/model_selection/_validation.py", line 236, in cross_validate    for train, test in cv.split(X, y, groups))  File "/Users/joann/opt/anaconda3/lib/python3.7/site-packages/joblib/parallel.py", line 1004, in __call__    if self.dispatch_one_batch(iterator):  File "/Users/joann/opt/anaconda3/lib/python3.7/site-packages/joblib/parallel.py", line 835, in dispatch_one_batch    self._dispatch(tasks)  File "/Users/joann/opt/anaconda3/lib/python3.7/site-packages/joblib/parallel.py", line 754, in _dispatch    job = self._backend.apply_async(batch, callback=cb)  File "/Users/joann/opt/anaconda3/lib/python3.7/site-packages/joblib/_parallel_backends.py", line 209, in apply_async    result = ImmediateResult(func)  File "/Users/joann/opt/anaconda3/lib/python3.7/site-packages/joblib/_parallel_backends.py", line 590, in __init__    self.results = batch()  File "/Users/joann/opt/anaconda3/lib/python3.7/site-packages/joblib/parallel.py", line 256, in __call__    for func, args, kwargs in self.items]  File "/Users/joann/opt/anaconda3/lib/python3.7/site-packages/joblib/parallel.py", line 256, in <listcomp>    for func, args, kwargs in self.items]  File "/Users/joann/opt/anaconda3/lib/python3.7/site-packages/sklearn/model_selection/_validation.py", line 544, in _fit_and_score    test_scores = _score(estimator, X_test, y_test, scorer)  File "/Users/joann/opt/anaconda3/lib/python3.7/site-packages/sklearn/model_selection/_validation.py", line 591, in _score    scores = scorer(estimator, X_test, y_test)  File "/Users/joann/opt/anaconda3/lib/python3.7/site-packages/sklearn/metrics/_scorer.py", line 89, in __call__    score = scorer(estimator, *args, **kwargs)  File "/Users/joann/opt/anaconda3/lib/python3.7/site-packages/sklearn/metrics/_scorer.py", line 371, in _passthrough_scorer    return estimator.score(*args, **kwargs)  File "/Users/joann/Desktop/Implementações ML/Adaboost Classifier/Adaboost.py", line 92, in score    scr_pred = self.predict(X)  File "/Users/joann/Desktop/Implementações ML/Adaboost Classifier/Adaboost.py", line 73, in predict    clf_pred = clf.predict(X)  File "/Users/joann/opt/anaconda3/lib/python3.7/site-packages/sklearn_extensions/extreme_learning_machines/elm.py", line 614, in predict    class_predictions = self.binarizer.inverse_transform(raw_predictions)  File "/Users/joann/opt/anaconda3/lib/python3.7/site-packages/sklearn/preprocessing/_label.py", line 528, in inverse_transform    self.classes_, threshold)  File "/Users/joann/opt/anaconda3/lib/python3.7/site-packages/sklearn/preprocessing/_label.py", line 750, in _inverse_binarize_thresholding    format(y.shape))ValueError: output_type='binary', but y.shape = (30, 3)

我的predict(self, X)方法返回一个大小为n_samples的向量,其中包含对X参数的预测。我还编写了一个score()函数如下:

def score(self, X, y):    scr_pred = self.predict(X)    return sum(scr_pred == y) / X.shape[0]

这个方法只是计算给定样本的模型准确率。无论我使用这个score()方法还是设置cross_val_score(... , scoring="accuracy"),都无法正常工作。

注意:我知道这个问题/答案,但这不适用于我的情况,因为我可以确认我的构造函数的一致性:

def __init__(self, estimators=["MLP"], n_rounds=5, random_state=10):    self.estimators = estimators    self.n_rounds = n_rounds    self.random_state = random_state

更新

进一步的研究让我找到了这个话题,其中解释了sklearn无法深度复制带有转换器的估算器。然而,我的估算器必须运行LabelBinarizer来转换数据以获取预测。因此,我更新了问题标题以反映实际问题。


回答:

然而,你的问题陈述在这里并不清晰,但从错误来看,似乎你在尝试进行多类分类。

问题在于,你的代码中可能在某个地方没有正确进行预处理,因为错误是从inverse_binarize_thresholding记录的,这是由于sklearn预处理的以下功能引起的:

def _inverse_binarize_thresholding(y, output_type, classes, threshold):       if output_type == "binary" and y.ndim == 2 and y.shape[1] > 2:        raise ValueError("output_type='binary', but y.shape = {0}".                         format(y.shape))

你的代码中一定缺少了一些转换或预处理,你需要正确使用LabelBinarizer

请参考以下文档并回溯错误以修复你的代码。

文档

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注