因此,我一直在进行我的第一个机器学习项目,作为其中的一部分,我尝试了来自sci-kit learn的各种模型,并且我为随机森林模型编写了如下代码:
#Random Forestreg = RandomForestRegressor(random_state=0, criterion = 'mse')#Apply grid search for best parametersparams = {'randomforestregressor__n_estimators' : range(100, 500, 200), 'randomforestregressor__min_samples_split' : range(2, 10, 3)}pipe = make_pipeline(reg)grid = GridSearchCV(pipe, param_grid = params, scoring='mean_squared_error', n_jobs=-1, iid=False, cv=5)reg = grid.fit(X_train, y_train)print('Best MSE: ', grid.best_score_)print('Best Parameters: ', grid.best_estimator_)y_train_pred = reg.predict(X_train)y_test_pred = reg.predict(X_test)tr_err = mean_squared_error(y_train_pred, y_train)ts_err = mean_squared_error(y_test_pred, y_test)print(tr_err, ts_err)results_train['random_forest'] = tr_errresults_test['random_forest'] = ts_err
但是,当我运行这段代码时,我得到了以下错误:
KeyError Traceback (most recent call last)~\anaconda3\lib\site-packages\sklearn\metrics\_scorer.py in get_scorer(scoring) 359 else:--> 360 scorer = SCORERS[scoring] 361 except KeyError:KeyError: 'mean_squared_error'During handling of the above exception, another exception occurred:ValueError Traceback (most recent call last)<ipython-input-149-394cd9e0c273> in <module> 5 pipe = make_pipeline(reg) 6 grid = GridSearchCV(pipe, param_grid = params, scoring='mean_squared_error', n_jobs=-1, iid=False, cv=5)----> 7 reg = grid.fit(X_train, y_train) 8 print('Best MSE: ', grid.best_score_) 9 print('Best Parameters: ', grid.best_estimator_)~\anaconda3\lib\site-packages\sklearn\utils\validation.py in inner_f(*args, **kwargs) 71 FutureWarning) 72 kwargs.update({k: arg for k, arg in zip(sig.parameters, args)})---> 73 return f(**kwargs) 74 return inner_f 75 ~\anaconda3\lib\site-packages\sklearn\model_selection\_search.py in fit(self, X, y, groups, **fit_params) 652 cv = check_cv(self.cv, y, classifier=is_classifier(estimator)) 653 --> 654 scorers, self.multimetric_ = _check_multimetric_scoring( 655 self.estimator, scoring=self.scoring) 656 ~\anaconda3\lib\site-packages\sklearn\metrics\_scorer.py in _check_multimetric_scoring(estimator, scoring) 473 if callable(scoring) or scoring is None or isinstance(scoring, 474 str):--> 475 scorers = {"score": check_scoring(estimator, scoring=scoring)} 476 return scorers, False 477 else:~\anaconda3\lib\site-packages\sklearn\utils\validation.py in inner_f(*args, **kwargs) 71 FutureWarning) 72 kwargs.update({k: arg for k, arg in zip(sig.parameters, args)})---> 73 return f(**kwargs) 74 return inner_f 75 ~\anaconda3\lib\site-packages\sklearn\metrics\_scorer.py in check_scoring(estimator, scoring, allow_none) 403 "'fit' method, %r was passed" % estimator) 404 if isinstance(scoring, str):--> 405 return get_scorer(scoring) 406 elif callable(scoring): 407 # Heuristic to ensure user has not passed a metric~\anaconda3\lib\site-packages\sklearn\metrics\_scorer.py in get_scorer(scoring) 360 scorer = SCORERS[scoring] 361 except KeyError:--> 362 raise ValueError('%r is not a valid scoring value. ' 363 'Use sorted(sklearn.metrics.SCORERS.keys()) ' 364 'to get valid options.' % scoring)ValueError: 'mean_squared_error' is not a valid scoring value. Use sorted(sklearn.metrics.SCORERS.keys()) to get valid options.
因此,我尝试通过从GridSearchCV(pipe, param_grid = params, scoring='mean_squared_error', n_jobs=-1, iid=False, cv=5)
中移除scoring='mean_squared_error'
来运行它。当我这样做时,代码运行得很好,并且给出了足够好的训练和测试误差。
尽管如此,我还是无法弄清楚为什么在GridSearchCV
函数中使用scoring='mean_squared_error'
参数会抛出那个错误。我做错了什么?
回答:
根据文档:
所有评分器对象都遵循这样的约定:返回值越高越好。因此,像
metrics.mean_squared_error
这样的度量模型与数据之间的距离的度量,可以作为neg_mean_squared_error可用,它返回度量的负值。
这意味着你必须传递scoring='neg_mean_squared_error'
,以便使用均方误差来评估网格搜索结果。