PyTorch – RuntimeError: 在加载VGG的state_dict时出现错误:

我使用PyTorch训练了一个模型并保存了一个state dict文件。我使用下面的代码加载了预训练模型。我收到了关于RuntimeError: 在加载VGG的state_dict时出现错误的消息:

RuntimeError: 在加载VGG的state_dict时出现错误:    state_dict中缺少的键:"features.0.weight", "features.0.bias", "features.2.weight", "features.2.bias", "features.5.weight", "features.5.bias", "features.7.weight", "features.7.bias", "features.10.weight", "features.10.bias", "features.12.weight", "features.12.bias", "features.14.weight", "features.14.bias", "features.17.weight", "features.17.bias", "features.19.weight", "features.19.bias", "features.21.weight", "features.21.bias", "features.24.weight", "features.24.bias", "features.26.weight", "features.26.bias", "features.28.weight", "features.28.bias", "classifier.0.weight", "classifier.0.bias", "classifier.3.weight", "classifier.3.bias", "classifier.6.weight", "classifier.6.bias"。    state_dict中意外的键:"state_dict", "optimizer_state_dict", "globalStep", "train_paths", "test_paths"。 

我正在按照这个网站上的说明进行操作: https://pytorch.org/tutorials/beginner/saving_loading_models.html#saving-loading-model-across-devices

非常感谢

import argparseimport datetimeimport globimport osimport randomimport shutilimport timefrom os.path import joinimport numpy as npimport pandas as pdimport torchimport torch.nn as nnfrom torch.utils.data import DataLoaderfrom torch.utils.tensorboard import SummaryWriterfrom torchvision.transforms import ToTensorfrom tqdm import tqdmimport torch.optim as optimfrom convnet3 import Convnetfrom dataset2 import CellsDatasetfrom convnet3 import Convnetfrom VGG import VGGfrom dataset2 import CellsDatasetfrom torchvision import modelsfrom Conv import Conv2dparser = argparse.ArgumentParser('预测像素中的命中')parser.add_argument('name',type=str,help='实验名称')parser.add_argument('data_dir',type=str,help='包含图像和gt.csv的数据目录路径')parser.add_argument('--weight_decay',type=float,default=0.0,help='权重衰减系数(如10^-5)')parser.add_argument('--lr',type=float,default=0.0001,help='学习率')args = parser.parse_args()metadata = pd.read_csv(join(args.data_dir,'gt.csv'))metadata.set_index('filename', inplace=True)# 创建数据集:dataset = CellsDataset(args.data_dir,transform=ToTensor(),return_filenames=True)dataset = DataLoader(dataset,num_workers=4,pin_memory=True)model_path = '/Users/nubstech/Documents/GitHub/CellCountingDirectCount/VGG_model_V1/checkpoints/checkpoint.pth'class VGG(nn.Module):    def __init__(self, pretrained=True):        super(VGG, self).__init__()        vgg = models.vgg16(pretrained=pretrained)        # if pretrained:        vgg.load_state_dict(torch.load(model_path))        features = list(vgg.features.children())        self.features4 = nn.Sequential(*features[0:23])        self.de_pred = nn.Sequential(Conv2d(512, 128, 1, same_padding=True, NL='relu'),                                     Conv2d(128, 1, 1, same_padding=True, NL='relu'))    def forward(self, x):        x = self.features4(x)               x = self.de_pred(x)        return xmodel=VGG()#model.load_state_dict(torch.load(model_path),strict=False)model.eval()        #optimizer = torch.optim.Adam(model.parameters(),lr=args.lr,weight_decay=args.weight_decay)for images, paths in tqdm(dataset):    targets = torch.tensor([metadata['count'][os.path.split(path)[-1]] for path in paths]) # B    targets = targets.float()    # 代码用于将训练数据打印到csv文件    #filename=CellsDataset(args.data_dir,transform=ToTensor(),return_filenames=True)    output = model(images) # B x 1 x 9 x 9 (类似于热图)    preds = output.sum(dim=[1,2,3]) # 预测的细胞计数(长度为B的向量)    print(preds)    paths_test = np.array([paths])    names_preds = np.hstack(paths)    print(names_preds)                    df=pd.DataFrame({'Image_Name':names_preds, 'Target':targets.detach(), 'Prediction':preds.detach()})    print(df)     # 保存图像名称、目标和预测    df.to_csv(r'model.csv', index=False, mode='a')

保存state dict的代码

        torch.save({'state_dict':model.state_dict(),                    'optimizer_state_dict':optimizer.state_dict(),                    'globalStep':global_step,                    'train_paths':dataset_train.files,                    'test_paths':dataset_test.files},checkpoint_path)

回答:

问题在于保存的内容与预期加载的内容不一致。代码尝试加载一个state_dict;它保存的内容比这多得多——看起来像是一个包含其他信息的字典内的state_dict。加载方法没有逻辑去查看字典内部。

这应该可以工作:

import torch, torchvision.modelsmodel = torchvision.models.vgg16()path = 'test.pth'torch.save(model.state_dict(), path) # 这里没有其他内容model.load_state_dict(torch.load(path))

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注