我在尝试创建一个具有多个输入分支的keras模型,但keras不喜欢输入的大小不同。
这是一个最小的示例:
import numpy as npfrom tensorflow import kerasfrom tensorflow.keras import layersinputA = layers.Input(shape=(2,))xA = layers.Dense(8, activation='relu')(inputA)inputB = layers.Input(shape=(3,))xB = layers.Dense(8, activation='relu')(inputB)merged = layers.Concatenate()([xA, xB])output = layers.Dense(8, activation='linear')(merged) model = keras.Model(inputs=[inputA, inputB], outputs=output)a = np.array([1, 2])b = np.array([3, 4, 5]) model.predict([a, b])
这导致了以下错误:
ValueError: Data cardinality is ambiguous: x sizes: 2, 3Please provide data which shares the same first dimension.
在keras中有没有更好的方法来做这件事?我已经阅读了其他涉及相同错误的问题,但我不是很理解我需要做哪些改变。
回答:
你需要以正确的格式传递数组… (n_batch, n_feat)。简单的重塑操作就足以创建批次维度
import numpy as npfrom tensorflow import kerasfrom tensorflow.keras import layersinputA = layers.Input(shape=(2,))xA = layers.Dense(8, activation='relu')(inputA)inputB = layers.Input(shape=(3,))xB = layers.Dense(8, activation='relu')(inputB)merged = layers.Concatenate()([xA, xB])output = layers.Dense(8, activation='linear')(merged) model = keras.Model(inputs=[inputA, inputB], outputs=output)a = np.array([1, 2]).reshape(1,-1)b = np.array([3, 4, 5]).reshape(1,-1)model.predict([a, b])