在Keras自定义损失函数中的错误 “TypeError: Value passed to parameter ‘reduction_indices’ has DataType float32 not in list of allowed values: int32, int64”

我在Keras中为函数定义了一个自定义损失函数:

(y - yhat)^2 + (y * yhat).

def customLoss(y_true, y_pred, sample_weight=None):    y_true = K.cast(y_true, 'float32')    y_pred = K.cast(y_pred, 'float32')    loss = K.square(y_true - y_pred) + K.prod(y_true, y_pred)    loss = loss * K.cast(sample_weights, 'float32')    return loss

当我运行model.fit时,它在TypeError上失败:

earlystopping = tf.keras.callbacks.EarlyStopping(monitor='val_loss',                                             mode='min', verbose=1, patience=20)history = model.fit(Xtrain, ytrain_raw,                     validation_data=(Xval, yval_raw), batch_size=128,                    epochs=500, verbose=1, callbacks=[earlystopping],                    sample_weight=sample_weights)

错误:

TypeError: in user code:    /usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py:571 train_function  *        outputs = self.distribute_strategy.run(    /usr/local/lib/python3.6/dist-packages/tensorflow/python/distribute/distribute_lib.py:951 run  **        return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)    /usr/local/lib/python3.6/dist-packages/tensorflow/python/distribute/distribute_lib.py:2290 call_for_each_replica        return self._call_for_each_replica(fn, args, kwargs)    /usr/local/lib/python3.6/dist-packages/tensorflow/python/distribute/distribute_lib.py:2649 _call_for_each_replica        return fn(*args, **kwargs)    /usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py:533 train_step  **        y, y_pred, sample_weight, regularization_losses=self.losses)    /usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/compile_utils.py:205 __call__        loss_value = loss_obj(y_t, y_p, sample_weight=sw)    /usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/losses.py:143 __call__        losses = self.call(y_true, y_pred)    /usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/losses.py:246 call        return self.fn(y_true, y_pred, **self._fn_kwargs)    <ipython-input-477-99f75f332877>:4 customLoss        loss = K.square(y_true - y_pred) + K.prod(y_true, y_pred)    /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:1716 prod        return tf.reduce_prod(x, axis, keepdims)    /usr/local/lib/python3.6/dist-packages/tensorflow/python/util/dispatch.py:180 wrapper        return target(*args, **kwargs)    /usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/math_ops.py:2196 reduce_prod        name=name))    /usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/gen_math_ops.py:6642 prod        name=name)    /usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/op_def_library.py:578 _apply_op_helper        param_name=input_name)    /usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/op_def_library.py:61 _SatisfiesTypeConstraint        ", ".join(dtypes.as_dtype(x).name for x in allowed_list)))    TypeError: Value passed to parameter 'reduction_indices' has DataType float32 not in list of allowed values: int32, int64

然而,如果我删除K.prod(y_true, y_pred)部分,代码可以无障碍运行。

def customLoss(y_true, y_pred, sample_weight=None):    y_true = K.cast(y_true, 'float32')    y_pred = K.cast(y_pred, 'float32')    loss = K.square(y_true - y_pred) #+ K.prod(y_true, y_pred)    loss = loss * K.cast(sample_weights, 'float32')    return loss

哪里出了问题?


回答:

我认为错误来自于你对K.prod()的第二个参数的调用。这个函数接受一个张量x,但你指定了两个张量y_truey_pred

错误本身是因为K.prod()的第二个参数指的是轴,必须是整数,而不能是浮点数。

听起来你可能想要使用tf.keras.layers.multiply()tf.keras.layers.dot()

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注