RapidMiner 数据挖掘逻辑回归单标签

目前正在进行一个教育数据挖掘项目。我在一些数据集中遇到了一个很常见的问题,但我无法在任何地方找到这个问题的解决方案。每当我运行我的流程时,总是显示

‘只有一个标签’,逻辑回归学习方案没有足够的能力来处理只有一个标签的示例集。如果只知道一个类别的示例,有现成的特殊建模操作符支持’单类标签’功能。

我有一些只有一个标签的数据集,运行得很好。我还尝试编辑标签,因为我使用了多标签。我无法理解这个问题。请帮帮我吧!下面是我的XML代码。

    <?xml version="1.0" encoding="UTF-8"?>    <process version="9.7.001">      <context>        <input/>        <output/>        <macros/>      </context>      <operator activated="true" class="process" compatibility="9.7.001" expanded="true" name="Process">        <parameter key="logverbosity" value="init"/>        <parameter key="random_seed" value="2001"/>        <parameter key="send_mail" value="never"/>        <parameter key="notification_email" value=""/>        <parameter key="process_duration_for_mail" value="30"/>        <parameter key="encoding" value="SYSTEM"/>        <process expanded="true">          <operator activated="true" class="read_excel" compatibility="9.7.001" expanded="true" height="68" name="Read Excel" width="90" x="45" y="34">            <parameter key="excel_file" value="D:\MyDocuments\CMUFiles\RESEARCH AND EXTENSION\SHs Performance NAT in Bukidnon\ExcelSubjectTemplate\Language-and-communication\finaldataAnalysis\Humss-Language-and-Communication.xlsx"/>            <parameter key="sheet_selection" value="sheet number"/>            <parameter key="sheet_number" value="1"/>            <parameter key="imported_cell_range" value="A1"/>            <parameter key="encoding" value="SYSTEM"/>            <parameter key="first_row_as_names" value="true"/>            <list key="annotations"/>            <parameter key="date_format" value=""/>            <parameter key="time_zone" value="SYSTEM"/>            <parameter key="locale" value="English (United States)"/>            <parameter key="read_all_values_as_polynominal" value="false"/>            <list key="data_set_meta_data_information">              <parameter key="0" value="Name.true.polynominal.attribute"/>              <parameter key="1" value="OC-G11-Q1.true.integer.attribute"/>              <parameter key="2" value="OC-G11-Q2.true.integer.attribute"/>              <parameter key="3" value="F-G11-Q1.true.integer.attribute"/>              <parameter key="4" value="F-G11-Q2.true.integer.attribute"/>              <parameter key="5" value="RWS-G11-Q3.true.integer.attribute"/>              <parameter key="6" value="RWS-G11-Q4.true.integer.attribute"/>              <parameter key="7" value="F-G11-Q3.true.integer.attribute"/>              <parameter key="8" value="F-G11-Q4.true.integer.attribute"/>              <parameter key="9" value="CW-G12-Q1.true.integer.attribute"/>              <parameter key="10" value="CW-G12-Q2.true.integer.attribute"/>              <parameter key="11" value="LC-PS-NAT.true.real.attribute"/>              <parameter key="12" value="LC-PS-NAT-Rem.true.polynominal.attribute"/>              <parameter key="13" value="LC-IL-NAT.true.real.attribute"/>              <parameter key="14" value="LC-IL-NAT-Rem.true.polynominal.attribute"/>              <parameter key="15" value="LC-CT-NAT.true.real.attribute"/>              <parameter key="16" value="LC-CT-NAT-Rem.true.polynominal.attribute"/>              <parameter key="17" value="Total-MPS.true.real.attribute"/>              <parameter key="18" value="overall-remarks.true.polynominal.attribute"/>              <parameter key="19" value="T.true.polynominal.attribute"/>              <parameter key="20" value="U.true.polynominal.attribute"/>              <parameter key="21" value="V.true.polynominal.attribute"/>            </list>            <parameter key="read_not_matching_values_as_missings" value="false"/>            <parameter key="datamanagement" value="double_array"/>            <parameter key="data_management" value="auto"/>          </operator>          <operator activated="true" class="subprocess" compatibility="9.7.001" expanded="true" height="82" name="Subprocess" width="90" x="179" y="34">            <process expanded="true">              <operator activated="true" class="replace_missing_values" compatibility="9.7.001" expanded="true" height="103" name="Replace Missing Values" width="90" x="45" y="34">                <parameter key="return_preprocessing_model" value="false"/>                <parameter key="create_view" value="false"/>                <parameter key="attribute_filter_type" value="all"/>                <parameter key="attribute" value=""/>                <parameter key="attributes" value=""/>                <parameter key="use_except_expression" value="false"/>                <parameter key="value_type" value="attribute_value"/>                <parameter key="use_value_type_exception" value="false"/>                <parameter key="except_value_type" value="time"/>                <parameter key="block_type" value="attribute_block"/>                <parameter key="use_block_type_exception" value="false"/>                <parameter key="except_block_type" value="value_matrix_row_start"/>                <parameter key="invert_selection" value="false"/>                <parameter key="include_special_attributes" value="false"/>                <parameter key="default" value="average"/>                <list key="columns"/>              </operator>              <operator activated="true" class="generate_id" compatibility="9.7.001" expanded="true" height="82" name="Generate ID" width="90" x="179" y="34">                <parameter key="create_nominal_ids" value="true"/>                <parameter key="offset" value="0"/>              </operator>              <operator activated="true" class="select_attributes" compatibility="9.7.001" expanded="true" height="82" name="Select Attributes" width="90" x="313" y="34">                <parameter key="attribute_filter_type" value="subset"/>                <parameter key="attribute" value=""/>                <parameter key="attributes" value="CW-G12-Q1|CW-G12-Q2|F-G11-Q1|F-G11-Q2|F-G11-Q3|F-G11-Q4|OC-G11-Q1|OC-G11-Q2|overall-remarks|RWS-G11-Q3|RWS-G11-Q4"/>                <parameter key="use_except_expression" value="false"/>                <parameter key="value_type" value="attribute_value"/>                <parameter key="use_value_type_exception" value="false"/>                <parameter key="except_value_type" value="time"/>                <parameter key="block_type" value="attribute_block"/>                <parameter key="use_block_type_exception" value="false"/>                <parameter key="except_block_type" value="value_matrix_row_start"/>                <parameter key="invert_selection" value="false"/>                <parameter key="include_special_attributes" value="false"/>              </operator>              <operator activated="true" class="remove_useless_attributes" compatibility="9.7.001" expanded="true" height="82" name="Remove Useless Attributes" width="90" x="514" y="34">                <parameter key="numerical_min_deviation" value="0.0"/>                <parameter key="nominal_useless_above" value="1.0"/>                <parameter key="nominal_remove_id_like" value="false"/>                <parameter key="nominal_useless_below" value="0.0"/>              </operator>              <connect from_port="in 1" to_op="Replace Missing Values" to_port="example set input"/>              <connect from_op="Replace Missing Values" from_port="example set output" to_op="Generate ID" to_port="example set input"/>              <connect from_op="Generate ID" from_port="example set output" to_op="Select Attributes" to_port="example set input"/>              <connect from_op="Select Attributes" from_port="example set output" to_op="Remove Useless Attributes" to_port="example set input"/>              <connect from_op="Remove Useless Attributes" from_port="example set output" to_port="out 1"/>              <portSpacing port="source_in 1" spacing="0"/>              <portSpacing port="source_in 2" spacing="0"/>              <portSpacing port="sink_out 1" spacing="0"/>              <portSpacing port="sink_out 2" spacing="0"/>            </process>          </operator>          <operator activated="true" class="set_role" compatibility="9.7.001" expanded="true" height="82" name="Set Role" width="90" x="313" y="34">            <parameter key="attribute_name" value="id"/>            <parameter key="target_role" value="batch"/>            <list key="set_additional_roles">              <parameter key="overall-remarks" value="label"/>            </list>          </operator>          <operator activated="true" class="split_data" compatibility="9.7.001" expanded="true" height="103" name="Split Data" width="90" x="447" y="85">            <enumeration key="partitions">              <parameter key="ratio" value="0.7"/>              <parameter key="ratio" value="0.3"/>            </enumeration>            <parameter key="sampling_type" value="automatic"/>            <parameter key="use_local_random_seed" value="true"/>            <parameter key="local_random_seed" value="1992"/>          </operator>          <operator activated="true" class="optimize_selection_evolutionary" compatibility="9.7.001" expanded="true" height="145" name="Optimize Selection (Evolutionary)" width="90" x="581" y="34">            <parameter key="use_exact_number_of_attributes" value="false"/>            <parameter key="restrict_maximum" value="false"/>            <parameter key="min_number_of_attributes" value="1"/>            <parameter key="max_number_of_attributes" value="1"/>            <parameter key="exact_number_of_attributes" value="1"/>            <parameter key="initialize_with_input_weights" value="false"/>            <parameter key="population_size" value="5"/>            <parameter key="maximum_number_of_generations" value="30"/>            <parameter key="use_early_stopping" value="false"/>            <parameter key="generations_without_improval" value="2"/>            <parameter key="normalize_weights" value="true"/>            <parameter key="use_local_random_seed" value="false"/>            <parameter key="local_random_seed" value="1992"/>            <parameter key="user_result_individual_selection" value="false"/>            <parameter key="show_population_plotter" value="false"/>            <parameter key="plot_generations" value="10"/>            <parameter key="constraint_draw_range" value="false"/>            <parameter key="draw_dominated_points" value="true"/>            <parameter key="maximal_fitness" value="Infinity"/>            <parameter key="selection_scheme" value="tournament"/>            <parameter key="tournament_size" value="0.25"/>            <parameter key="start_temperature" value="1.0"/>            <parameter key="dynamic_selection_pressure" value="true"/>            <parameter key="keep_best_individual" value="false"/>            <parameter key="save_intermediate_weights" value="false"/>            <parameter key="intermediate_weights_generations" value="10"/>            <parameter key="p_initialize" value="0.5"/>            <parameter key="p_mutation" value="-1.0"/>            <parameter key="p_crossover" value="0.5"/>            <parameter key="crossover_type" value="uniform"/>            <process expanded="true">              <operator activated="true" class="time_series:multi_label_model_learner" compatibility="9.7.000" expanded="true" height="103" name="Multi Label Modeling" width="90" x="112" y="34">                <parameter key="attribute_filter_type" value="subset"/>                <parameter key="attribute" value=""/>                <parameter key="attributes" value="overall-remarks"/>                <parameter key="use_except_expression" value="false"/>                <parameter key="value_type" value="attribute_value"/>                <parameter key="use_value_type_exception" value="false"/>                <parameter key="except_value_type" value="time"/>                <parameter key="block_type" value="attribute_block"/>                <parameter key="use_block_type_exception" value="false"/>                <parameter key="except_block_type" value="value_matrix_row_start"/>                <parameter key="invert_selection" value="false"/>                <parameter key="include_special_attributes" value="true"/>                <parameter key="add_macros" value="false"/>                <parameter key="current_label_name_macro" value="current_label_attribute"/>                <parameter key="current_label_type_macro" value="current_label_type"/>                <parameter key="enable_parallel_execution" value="true"/>                <process expanded="true">                  <operator activated="true" class="set_role" compatibility="9.7.001" expanded="true" height="82" name="Set Role (2)" width="90" x="112" y="34">                    <parameter key="attribute_name" value="overall-remarks"/>                    <parameter key="target_role" value="label"/>                    <list key="set_additional_roles"/>                  </operator>                  <operator activated="true" class="concurrency:cross_validation" compatibility="9.7.001" expanded="true" height="145" name="Cross Validation" width="90" x="313" y="34">                    <parameter key="split_on_batch_attribute" value="false"/>                    <parameter key="leave_one_out" value="false"/>                    <parameter key="number_of_folds" value="10"/>                    <parameter key="sampling_type" value="automatic"/>                    <parameter key="use_local_random_seed" value="false"/>                    <parameter key="local_random_seed" value="1992"/>                    <parameter key="enable_parallel_execution" value="true"/>                    <process expanded="true">                      <operator activated="true" class="polynomial_by_binomial_classification" compatibility="9.7.001" expanded="true" height="82" name="Polynominal by Binominal Classification" width="90" x="179" y="34">                        <parameter key="classification_strategies" value="1 against all"/>                        <parameter key="random_code_multiplicator" value="2.0"/>                        <parameter key="use_local_random_seed" value="false"/>                        <parameter key="local_random_seed" value="1992"/>                        <process expanded="true">                          <operator activated="true" class="h2o:logistic_regression" compatibility="9.7.001" expanded="true" height="124" name="Logistic Regression" width="90" x="45" y="136">                            <parameter key="solver" value="AUTO"/>                            <parameter key="reproducible" value="false"/>                            <parameter key="maximum_number_of_threads" value="4"/>                            <parameter key="use_regularization" value="false"/>                            <parameter key="lambda_search" value="false"/>                            <parameter key="number_of_lambdas" value="0"/>                            <parameter key="lambda_min_ratio" value="0.0"/>                            <parameter key="early_stopping" value="true"/>                            <parameter key="stopping_rounds" value="3"/>                            <parameter key="stopping_tolerance" value="0.001"/>                            <parameter key="standardize" value="true"/>                            <parameter key="non-negative_coefficients" value="false"/>                            <parameter key="add_intercept" value="true"/>                            <parameter key="compute_p-values" value="true"/>                            <parameter key="remove_collinear_columns" value="true"/>                            <parameter key="missing_values_handling" value="MeanImputation"/>                            <parameter key="max_iterations" value="0"/>                            <parameter key="max_runtime_seconds" value="0"/>                          </operator>                          <connect from_port="training set" to_op="Logistic Regression" to_port="training set"/>                          <connect from_op="Logistic Regression" from_port="model" to_port="model"/>                          <portSpacing port="source_training set" spacing="0"/>                          <portSpacing port="sink_model" spacing="0"/>                        </process>                      </operator>                      <connect from_port="training set" to_op="Polynominal by Binominal Classification" to_port="training set"/>                      <connect from_op="Polynominal by Binominal Classification" from_port="model" to_port="model"/>                      <portSpacing port="source_training set" spacing="0"/>                      <portSpacing port="sink_model" spacing="0"/>                      <portSpacing port="sink_through 1" spacing="0"/>                    </process>                    <process expanded="true">                      <operator activated="true" class="apply_model" compatibility="9.7.001" expanded="true" height="82" name="Apply Model" width="90" x="45" y="34">                        <list key="application_parameters"/>                        <parameter key="create_view" value="false"/>                      </operator>                      <operator activated="true" class="performance_classification" compatibility="9.7.001" expanded="true" height="82" name="Performance" width="90" x="179" y="34">                        <parameter key="main_criterion" value="first"/>                        <parameter key="accuracy" value="true"/>                        <parameter key="classification_error" value="false"/>                        <parameter key="kappa" value="false"/>                        <parameter key="weighted_mean_recall" value="false"/>                        <parameter key="weighted_mean_precision" value="false"/>                        <parameter key="spearman_rho" value="false"/>                        <parameter key="kendall_tau" value="false"/>                        <parameter key="absolute_error" value="false"/>                        <parameter key="relative_error" value="false"/>                        <parameter key="relative_error_lenient" value="false"/>                        <parameter key="relative_error_strict" value="false"/>                        <parameter key="normalized_absolute_error" value="false"/>                        <parameter key="root_mean_squared_error" value="false"/>                        <parameter key="root_relative_squared_error" value="false"/>                        <parameter key="squared_error" value="false"/>                        <parameter key="correlation" value="false"/>                        <parameter key="squared_correlation" value="false"/>                        <parameter key="cross-entropy" value="false"/>                        <parameter key="margin" value="false"/>                        <parameter key="soft_margin_loss" value="false"/>                        <parameter key="logistic_loss" value="false"/>                        <parameter key="skip_undefined_labels" value="true"/>                        <parameter key="use_example_weights" value="true"/>                        <list key="class_weights"/>                      </operator>                      <connect from_port="model" to_op="Apply Model" to_port="model"/>                      <connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/>                      <connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/>                      <connect from_op="Performance" from_port="performance" to_port="performance 1"/>                      <portSpacing port="source_model" spacing="0"/>                      <portSpacing port="source_test set" spacing="0"/>                      <portSpacing port="source_through 1" spacing="0"/>                      <portSpacing port="sink_test set results" spacing="0"/>                      <portSpacing port="sink_performance 1" spacing="0"/>                      <portSpacing port="sink_performance 2" spacing="0"/>                    </process>                  </operator>                  <operator activated="true" class="apply_model" compatibility="9.7.001" expanded="true" height="82" name="Apply Model (2)" width="90" x="514" y="187">                    <list key="application_parameters"/>                    <parameter key="create_view" value="false"/>                  </operator>                  <connect from_port="training set" to_op="Set Role (2)" to_port="example set input"/>                  <connect from_port="input 1" to_op="Apply Model (2)" to_port="unlabelled data"/>                  <connect from_op="Set Role (2)" from_port="example set output" to_op="Cross Validation" to_port="example set"/>                  <connect from_op="Cross Validation" from_port="model" to_op="Apply Model (2)" to_port="model"/>                  <connect from_op="Apply Model (2)" from_port="model" to_port="model"/>                  <portSpacing port="source_training set" spacing="0"/>                  <portSpacing port="source_input 1" spacing="0"/>                  <portSpacing port="source_input 2" spacing="0"/>                  <portSpacing port="sink_model" spacing="0"/>                  <portSpacing port="sink_output 1" spacing="0"/>                </process>              </operator>              <operator activated="true" class="apply_model" compatibility="9.7.001" expanded="true" height="82" name="Apply Model (3)" width="90" x="246" y="136">                <list key="application_parameters"/>                <parameter key="create_view" value="false"/>              </operator>              <operator activated="true" class="set_role" compatibility="9.7.001" expanded="true" height="82" name="Set Role (3)" width="90" x="380" y="34">                <parameter key="attribute_name" value="overall-remarks"/>                <parameter key="target_role" value="label"/>                <list key="set_additional_roles">                  <parameter key="prediction(overall-remarks)" value="prediction"/>                </list>              </operator>              <operator activated="true" class="performance_classification" compatibility="9.7.001" expanded="true" height="82" name="Performance (2)" width="90" x="514" y="34">                <parameter key="main_criterion" value="first"/>                <parameter key="accuracy" value="true"/>                <parameter key="classification_error" value="false"/>                <parameter key="kappa" value="false"/>                <parameter key="weighted_mean_recall" value="false"/>                <parameter key="weighted_mean_precision" value="false"/>                <parameter key="spearman_rho" value="false"/>                <parameter key="kendall_tau" value="false"/>                <parameter key="absolute_error" value="false"/>                <parameter key="relative_error" value="false"/>                <parameter key="relative_error_lenient" value="false"/>                <parameter key="relative_error_strict" value="false"/>                <parameter key="normalized_absolute_error" value="false"/>                <parameter key="root_mean_squared_error" value="false"/>                <parameter key="root_relative_squared_error" value="false"/>                <parameter key="squared_error" value="false"/>                <parameter key="correlation" value="false"/>                <parameter key="squared_correlation" value="false"/>                <parameter key="cross-entropy" value="false"/>                <parameter key="margin" value="false"/>                <parameter key="soft_margin_loss" value="false"/>                <parameter key="logistic_loss" value="false"/>                <parameter key="skip_undefined_labels" value="true"/>                <parameter key="use_example_weights" value="true"/>                <list key="class_weights"/>              </operator>              <connect from_port="example set" to_op="Multi Label Modeling" to_port="input 1"/>              <connect from_port="through 1" to_op="Multi Label Modeling" to_port="training set"/>              <connect from_port="through 2" to_op="Apply Model (3)" to_port="unlabelled data"/>              <connect from_op="Multi Label Modeling" from_port="model" to_op="Apply Model (3)" to_port="model"/>              <connect from_op="Apply Model (3)" from_port="labelled data" to_op="Set Role (3)" to_port="example set input"/>              <connect from_op="Set Role (3)" from_port="example set output" to_op="Performance (2)" to_port="labelled data"/>              <connect from_op="Performance (2)" from_port="performance" to_port="performance"/>              <portSpacing port="source_example set" spacing="0"/>              <portSpacing port="source_through 1" spacing="0"/>              <portSpacing port="source_through 2" spacing="0"/>              <portSpacing port="source_through 3" spacing="0"/>              <portSpacing port="sink_performance" spacing="0"/>            </process>          </operator>          <connect from_op="Read Excel" from_port="output" to_op="Subprocess" to_port="in 1"/>          <connect from_op="Subprocess" from_port="out 1" to_op="Set Role" to_port="example set input"/>          <connect from_op="Set Role" from_port="example set output" to_op="Optimize Selection (Evolutionary)" to_port="example set in"/>          <connect from_op="Set Role" from_port="original" to_op="Split Data" to_port="example set"/>          <connect from_op="Split Data" from_port="partition 1" to_op="Optimize Selection (Evolutionary)" to_port="through 1"/>          <connect from_op="Split Data" from_port="partition 2" to_op="Optimize Selection (Evolutionary)" to_port="through 2"/>          <connect from_op="Optimize Selection (Evolutionary)" from_port="example set out" to_port="result 1"/>          <portSpacing port="source_input 1" spacing="0"/>          <portSpacing port="sink_result 1" spacing="0"/>          <portSpacing port="sink_result 2" spacing="0"/>        </process>      </operator>    </process>

回答:

从你的流程来看(没有访问数据的情况下),我猜测问题在于你尝试训练逻辑回归的数据集只有一个标签类(例如只有TRUE,没有FALSE)。如果你的示例集中示例很少,并且碰巧只有一个类别出现在训练折叠中,也会发生这种情况。

关于你展示的流程,我还想知道,为什么你在只有一个名为“overall-remarks”的标签列时使用多标签建模。在这种情况下,普通的分类策略应该也能很好地工作。

关于流程设计和RapidMiner的一般问题,我建议你重新在RapidMiner社区发布你的问题:https://community.rapidminer.com

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注