mlmodel的输出形状为空。为什么形状为空?

我学习了这个教程 https://www.tensorflow.org/tutorials/generative/cyclegan,完成的模型在Windows上运行良好。然后我将这个tf模型转换为mlmodel,但模型的输出(多维数组)形状为空。我该如何解决这个问题…?(这个模型的EPOCH为1)

电脑配置::: Windows10 / TensorFlow和-gpu 2.2 / tfcoreml 1.1

这是转换代码

import tfcoremlimport coremltoolsfrom tensorflow import kerassaved_model = keras.models.load_model('saved_model')# get input, output node names for the TF graph from the Keras modelinput_name = (saved_model.inputs[0].name.split(':')[0])[0:7]keras_output_node_name = saved_model.outputs[0].name.split(':')[0]graph_output_node_name = keras_output_node_name.split('/')[-1]# Saving the Core ML model to a file.model = tfcoreml.convert('saved_model',                         image_input_names=input_name,                         input_name_shape_dict={input_name: [1, 540, 540, 3]},                         output_feature_names=[graph_output_node_name],                         minimum_ios_deployment_target='13',                         red_bias=-123.68,                         green_bias=-116.78,                         blue_bias=-103.94)model.save('./saved_mlmodel/saved_model.mlmodel')

这是saved_model.summary

Model: "model_1"__________________________________________________________________________________________________Layer (type)                    Output Shape         Param #     Connected to                     ==================================================================================================input_2 (InputLayer)            [(None, None, None,  0                                            __________________________________________________________________________________________________sequential_15 (Sequential)      (None, None, None, 6 3072        input_2[0][0]                    __________________________________________________________________________________________________sequential_16 (Sequential)      (None, None, None, 1 131328      sequential_15[0][0]              __________________________________________________________________________________________________sequential_17 (Sequential)      (None, None, None, 2 524800      sequential_16[0][0]              __________________________________________________________________________________________________sequential_18 (Sequential)      (None, None, None, 5 2098176     sequential_17[0][0]              __________________________________________________________________________________________________sequential_19 (Sequential)      (None, None, None, 5 4195328     sequential_18[0][0]              __________________________________________________________________________________________________sequential_20 (Sequential)      (None, None, None, 5 4195328     sequential_19[0][0]              __________________________________________________________________________________________________sequential_21 (Sequential)      (None, None, None, 5 4195328     sequential_20[0][0]              __________________________________________________________________________________________________sequential_22 (Sequential)      (None, None, None, 5 4195328     sequential_21[0][0]              __________________________________________________________________________________________________sequential_23 (Sequential)      (None, None, None, 5 4195328     sequential_22[0][0]              __________________________________________________________________________________________________concatenate_1 (Concatenate)     multiple             0           sequential_23[0][0]                                                                               sequential_21[0][0]                                                                               sequential_24[0][0]                                                                               sequential_20[0][0]                                                                               sequential_25[0][0]                                                                               sequential_19[0][0]                                                                               sequential_26[0][0]                                                                               sequential_18[0][0]                                                                               sequential_27[0][0]                                                                               sequential_17[0][0]                                                                               sequential_28[0][0]                                                                               sequential_16[0][0]                                                                               sequential_29[0][0]                                                                               sequential_15[0][0]              __________________________________________________________________________________________________sequential_24 (Sequential)      (None, None, None, 5 8389632     concatenate_1[0][0]              __________________________________________________________________________________________________sequential_25 (Sequential)      (None, None, None, 5 8389632     concatenate_1[1][0]              __________________________________________________________________________________________________sequential_26 (Sequential)      (None, None, None, 5 8389632     concatenate_1[2][0]              __________________________________________________________________________________________________sequential_27 (Sequential)      (None, None, None, 2 4194816     concatenate_1[3][0]              __________________________________________________________________________________________________sequential_28 (Sequential)      (None, None, None, 1 1048832     concatenate_1[4][0]              __________________________________________________________________________________________________sequential_29 (Sequential)      (None, None, None, 6 262272      concatenate_1[5][0]              __________________________________________________________________________________________________conv2d_transpose_15 (Conv2DTran (None, None, None, 3 6147        concatenate_1[6][0]              ==================================================================================================Total params: 54,414,979Trainable params: 54,414,979Non-trainable params: 0

这是mlmodel.spec描述

input {  name: "input_2"  type {    imageType {      width: 540      height: 540      colorSpace: RGB    }  }}output {  name: "Identity"  type {    multiArrayType {      dataType: FLOAT32    }  }}metadata {  userDefined {    key: "coremltoolsVersion"    value: "3.4"  }}

回答:

这通常不是问题。当你运行模型时,你仍然会得到正确形状的多维数组。

如果你已经知道形状,你可以填写它,以便它显示在mlmodel文件中,但这更多是为了文档目的,而不是其他任何事情。

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注