好的,我正在按照https://medium.com/@phylypo/text-classification-with-scikit-learn-on-khmer-documents-1a395317d195 和 https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html 的指导,尝试基于类别对文本进行分类。我的数据框布局如下,并命名为result
:
target type post1 intj "hello world shdjd"2 entp "hello world fddf"16 estj "hello world dsd"4 esfp "hello world sfs"1 intj "hello world ddfd"
目标是根据类型对帖子进行分类,而target
只是为16种类型中的每一种分配了1到16的编号。为了对文本进行分类,我这样做:
result = result[:1000] #缩短df - 之前是:600# 将数据集分割为训练和验证数据集train_x, valid_x, train_y, valid_y = model_selection.train_test_split(result['post'], result['type'], test_size=0.30, random_state=1)# 对目标变量进行标签编码encoder = preprocessing.LabelEncoder()train_y = encoder.fit_transform(train_y)valid_y = encoder.fit_transform(valid_y)def tokenizersplit(str): return str.split()tfidf_vect = TfidfVectorizer(tokenizer=tokenizersplit, encoding='utf-8', min_df=2, ngram_range=(1, 2), max_features=25000)tfidf_vect.fit(result['post'])tfidf_vect.transform(result['post'])xtrain_tfidf = tfidf_vect.transform(train_x)xvalid_tfidf = tfidf_vect.transform(valid_x)def train_model(classifier, trains, t_labels, valids, v_labels): # 使用分类器拟合训练数据集 classifier.fit(trains, t_labels) # 预测验证数据集的标签 predictions = classifier.predict(valids) return metrics.accuracy_score(predictions, v_labels)# 朴素贝叶斯accuracy = train_model(naive_bayes.MultinomialNB(), xtrain_tfidf, train_y, xvalid_tfidf, valid_y)print ("NB accuracy: ", accuracy)# 逻辑回归accuracy = train_model(linear_model.LogisticRegression(), xtrain_tfidf, train_y, xvalid_tfidf, valid_y)print ("LR accuracy: ", accuracy)
根据我在开始时对result
的缩短程度,所有算法的准确率最高约为0.4。准确率应该是0.8-0.9。
我阅读了scikit在分类器(朴素贝叶斯,决策树分类器)上的准确率非常低,但不知道如何将其应用到我的数据框中。我的数据很简单 – 有类别(type
)和文本(post
)。
这里出了什么问题?
编辑 – 朴素贝叶斯尝试2:
text_clf = Pipeline([ ('vect', CountVectorizer()), ('tfidf', TfidfTransformer()), ('clf', MultinomialNB()),])text_clf.fit(result.post, result.target)docs_test = result.postpredicted = text_clf.predict(docs_test)np.mean(predicted == result.target)print("Naive Bayes: ")print(np.mean(predicted == result.target))
回答:
你在做什么
我认为错误在于这些行:
encoder = preprocessing.LabelEncoder()train_y = encoder.fit_transform(train_y)valid_y = encoder.fit_transform(valid_y)
通过两次拟合,你重置了LabelEncoder
的知识。
在一个更简单的例子中:
from sklearn import preprocessingle = preprocessing.LabelEncoder()y_train = le.fit_transform(["class1", "class2", "class3"])y_valid = le.fit_transform(["class2", "class3"])print(y_train)print(y_valid)
输出这些标签编码:
[0 1 2][0 1]
这是错误的,因为编码标签0
在训练集中是class1
,在验证集中是class2
。
修复
我会将你的前几行改为:
result = result[:1000] #缩短df - 之前是:600# 在分割之前编码标签encoder = preprocessing.LabelEncoder()y_encoded = encoder.fit_transform(result['type'])# 注意,我将目标从result['type']改为了y_encodedtrain_x, valid_x, train_y, valid_y = model_selection.train_test_split(result['post'], y_encoded, test_size=0.30, random_state=1)def tokenizersplit(str): return str.split()...