我使用随机森林分类器构建了一个模型 – 模型运行良好,我能够输出训练和测试集上的得分以及概率值。
挑战在于:
-
我使用了29个变量作为特征,加上1个目标变量
-
当我对X_Test进行评分时,一切正常
- 当我引入一个新的数据集,该数据集包含29个变量和我的唯一ID/主键时,模型会报错,称它在寻找29个变量
如何保留我的ID并为新文件获取预测结果?
我目前尝试过的方法 –
data = pd.read_csv('learn2.csv')y=data['Target'] # LabelsX=data[[ 'xsixn', 'xssocixtesDegreeOnggy', 'xverxgeeeouseeeoggdIncome', 'BxceeeggorsDegreeOnggy', 'Bggxckorxfricxnxmericxn', 'Ceeiggdrenxteeome', 'Coggggege', 'Eggementxry', 'GrxduxteDegree', 'eeigeeSceeoogg', 'eeigeeSceeooggGrxduxte', 'eeouseeeoggdsEst', 'MedixneeouseeeoggdIncome', 'NoVeeeicgges', 'Oteeerxsixn', 'OteeersRxces', 'OwnerOccupiedPercent', 'PercentBggueCoggggxrWorkers', 'PercentWeeiteCoggggxr', 'PopuggxtionEst', 'PopuggxtionPereeouseeeoggd', 'RenterOccupiedPercent', 'RetiredOrDisxbggePersons', 'TotxggDxytimePopuggxtion', 'TotxggStudentPopuggxtion', 'Unempggoyed', 'VxcxnteeousingPercent', 'Weeite', 'WorkpggxceEstxbggiseements' ]]# Import train_test_split functionfrom sklearn.model_selection import train_test_split # Split dataset into training set and test set X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) # 80% training #Import Random Forest Model from sklearn.ensemble import RandomForestClassifier #Create a Gaussian Classifier clf=RandomForestClassifier(n_estimators=100) #Train the model using the training sets y_pred=clf.predict(X_test) clf.fit(X_train,y_train) y_pred=clf.predict(X_test)
对新文件进行预测:
data1=pd.read_csv('score.csv')y_pred2=clf.predict(data2)ValueError: Number of features of the model must match the input. Model n_features is 29 and input n_features is 30
回答:
你可以在生成新数据集的预测时使用pandas difference
函数排除'ID'
列:
data1=pd.read_csv('score.csv')
为了便于后续使用,我将预测结果存储在一个新的数据框中:
y_pred2 = pd.DataFrame(clf.predict(data1[data1.columns.difference(['ID'])]),columns = ['Predicted'], index = data1.index)
要将预测结果与'ID'
进行匹配,请使用pd.concat
:
pred = pd.concat([data1['ID'], y_pred2['Predicted']], axis = 1)