为什么我的所有回归模型的准确率都远低于分类模型?

我在测试下面的样本代码。所有分类结果都相当不错且合理(80%或更高)。所有回归结果却非常糟糕且异常(约20%)。为什么会这样?我一定是做错了什么,但我不清楚问题出在哪里。

import pandas as pdimport numpy as np#reading the datasetdf=pd.read_csv("C:\\my_path\\train.csv")#filling missing valuesdf['Gender'].fillna('Male', inplace=True)df.fillna(0)df.Loan_Status.replace(('Y', 'N'), (1, 0), inplace=True)#split dataset into train and testfrom sklearn.model_selection import train_test_splittrain, test = train_test_split(df, test_size=0.3, random_state=0)x_train=train.drop(['Loan_Status','Loan_ID'],axis=1)y_train=train['Loan_Status']x_test=test.drop(['Loan_Status','Loan_ID'],axis=1)y_test=test['Loan_Status']#create dummiesx_train=pd.get_dummies(x_train)x_test=pd.get_dummies(x_test)# Baggin Classifierfrom sklearn.ensemble import BaggingClassifierfrom sklearn import treemodel = BaggingClassifier(tree.DecisionTreeClassifier(random_state=1))model.fit(x_train, y_train)model.score(x_test,y_test)# Bagging Regressorfrom sklearn.ensemble import BaggingRegressormodel = BaggingRegressor(tree.DecisionTreeRegressor(random_state=1))model.fit(x_train, y_train)model.score(x_test,y_test)# AdaBoostClassifierfrom sklearn.ensemble import AdaBoostClassifiermodel = AdaBoostClassifier(random_state=1)model.fit(x_train, y_train)model.score(x_test,y_test)# AdaBoostRegressorfrom sklearn.ensemble import AdaBoostRegressormodel = AdaBoostRegressor()model.fit(x_train, y_train)model.score(x_test,y_test)# GradientBoostingClassifierfrom sklearn.ensemble import GradientBoostingClassifiermodel= GradientBoostingClassifier(learning_rate=0.01,random_state=1)model.fit(x_train, y_train)model.score(x_test,y_test)# GradientBoostingRegressorfrom sklearn.ensemble import GradientBoostingRegressormodel= GradientBoostingRegressor()model.fit(x_train, y_train)model.score(x_test,y_test)# XGBClassifierimport xgboost as xgbmodel=xgb.XGBClassifier(random_state=1,learning_rate=0.01)model.fit(x_train, y_train)model.score(x_test,y_test)# XGBRegressorimport xgboost as xgbmodel=xgb.XGBRegressor()model.fit(x_train, y_train)model.score(x_test,y_test)

样本数据来自下面的链接。

https://www.kaggle.com/wendykan/lending-club-loan-data

最后,这里是我看到的一些小样本。

# Bagging Regressorfrom sklearn.ensemble import BaggingRegressorregressor = BaggingRegressor()regressor.fit(x_train,y_train)accuracy = regressor.score(x_test,y_test)print(accuracy*100,'%')# result:13.022388059701505 %from sklearn.linear_model import LinearRegressionregressor = LinearRegression()regressor.fit(x_train,y_train)accuracy = regressor.score(x_test,y_test)print(accuracy*100,'%')# result:29.836209522493196 %

回答:

回归和分类是两种不同的任务。从你的代码来看,你似乎在用与分类器相同的数据来拟合回归器。基本上,回归器试图找到一个函数,以最佳方式猜测基于输入的输出数字。因此,目标值应该是连续空间的数字,而非类别。例如,你可能想根据借款人借出的金额来预测其收入。

查看这篇Medium文章以了解更多关于回归和分类之间的区别。

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注