我正在尝试在散点图上根据我的预测数据绘制一条回归线。
问题是我应该得到一条线,但我的图表上却有很多连接所有点的线(见图)https://i.sstatic.net/VF483.png
在根据其他数据预测二氧化碳排放后,我绘制了测试引擎尺寸与测试的实际数据(co2emissions)的关系图,并且我试图在引擎尺寸与测试的预测数据上绘制线,但做不到。
这是代码:
#import the datasetdf = pd.read_csv('FuelConsumptionCo2.csv')cols = ['ENGINESIZE','CYLINDERS','FUELTYPE','FUELCONSUMPTION_CITY','FUELCONSUMPTION_HWY','FUELCONSUMPTION_COMB','CO2EMISSIONS']#create new dataset with colums neeededcdf = df[cols]#dummies for the categorigal column fueltypecdf = pd.get_dummies(cdf,'FUELTYPE')#the features without the target columnselFeatures = list(cdf.columns.values)del selFeatures[5]#split the dataset for fittingX_train, X_test, Y_train, Y_test = train_test_split(cdf[selFeatures], cdf['CO2EMISSIONS'], test_size=0.5)#regression modelclfregr = linear_model.LinearRegression()#train the modelclfregr.fit(X_train, Y_train)#predict the valuestrain_pred = clfregr.predict(X_train)test_pred = clfregr.predict(X_test)#regression line for the predicted in testplt.scatter(X_test.ENGINESIZE,Y_test, color='gray')plt.plot(X_test.ENGINESIZE, test_pred, color='red', linewidth=1)plt.show()
回答:
数据中有9个独立变量。因此,如果只根据其中一个变量绘图,你会得到每个ENGINESIZE
值的重复。这并不会形成可绘制的函数。当你试图绘制一条线时,它会在这些多个垂直点之间 zigzag 变化。
请注意,当我们对预测值进行scatterplot
绘图时,我们会在一条垂直线上有很多点——这些点对应于你正在x-axis
上绘图的变量之外的其他八个独立变量的不同值:
plt.scatter(X_test.ENGINESIZE, test_pred, color='yello') # , linewidth=1)
我得说,sklearn
的LinearRegression
类使用起来相当困难。我改用了statsmodels
plt.scatter(X_test.ENGINESIZE,Y_test, color='gray')import statsmodels.formula.api as smfy = Y_trainX = X_traindf = pd.DataFrame({'x' : X.ENGINESIZE, 'y': y})smod = smf.ols(formula ='y~ x', data=df)result = smod.fit()plt.plot(df['x'], result.predict(df['x']), color='red', linewidth=1)plt.show()
然后为了额外的分数
print(result.summary())