LSTM网络用于空间入侵者强化学习(Keras)

我刚开始接触强化学习,尝试使用LSTM来训练一个空间入侵者代理。我尝试使用这篇论文中的网络,但一直遇到问题:

-如果我使用Conv2D,维度与LSTM不匹配,我会得到这个错误:

ValueError: Input 0 is incompatible with layer conv_lst_m2d_1: expected ndim=5, found ndim=4

这是代码:

    self.model = Sequential()    self.model.add(Conv2D(32,kernel_size=8,strides=4,activation='relu',input_shape=(None,84,84,1)))    self.model.add(Conv2D(64,kernel_size=4,strides=2,activation='relu'))    self.model.add(Conv2D(64,kernel_size=3, strides=1,activation='relu'))    self.model.add(ConvLSTM2D(512, kernel_size=(3,3), padding='same', return_sequences=False))    self.model.add(Dense(4, activation='relu'))    self.model.compile(loss='mse', optimizer=Adam(lr=0.0001))    self.model.summary()

-如果我使用Conv3D,它输出一个5D张量,我无法使用单张图像作为输入:

ValueError: Error when checking input: expected conv3d_1_input to have 5 dimensions, but got array with shape (1, 84, 84, 1)

代码:

    self.model.add(Conv3D(32,kernel_size=8,strides=4,activation='relu',input_shape=(None,84,84,1)))    self.model.add(Conv3D(64,kernel_size=4,strides=2,activation='relu'))    self.model.add(Conv3D(64,kernel_size=3, strides=1,activation='relu'))    self.model.add(ConvLSTM2D(512, kernel_size=(3,3), padding='same', return_sequences=False))    self.model.add(Dense(4, activation='relu'))    self.model.compile(loss='mse', optimizer=Adam(lr=0.0001))    self.model.summary()

(编辑)

网络摘要(第二个网络):

_________________________________________________________________Layer (type)                 Output Shape              Param #   =================================================================conv3d_1 (Conv3D)            (None, None, 20, 20, 32)  16416     _________________________________________________________________conv3d_2 (Conv3D)            (None, None, 9, 9, 64)    131136    _________________________________________________________________conv3d_3 (Conv3D)            (None, None, 7, 7, 64)    110656    _________________________________________________________________conv_lst_m2d_1 (ConvLSTM2D)  (None, 7, 7, 512)         10618880  _________________________________________________________________dense_1 (Dense)              (None, 7, 7, 4)           2052      =================================================================

数据输入形状为:(84, 84, 1)


回答:

你需要使用TimeDistributed Conv2D,它告诉你的网络将数据理解为时间序列(我猜这正是你想要的),并且会匹配LSTM的内部形状。

import tensorflow as tfmodel = tf.keras.Sequential()model.add(tf.keras.layers.Input(shape=(None,84,84,1)))model.add(tf.keras.layers.TimeDistributed(tf.keras.layers.Conv2D(32,kernel_size=8,strides=4,activation='relu')))model.add(tf.keras.layers.TimeDistributed(tf.keras.layers.Conv2D(64,kernel_size=4,strides=2,activation='relu')))model.add(tf.keras.layers.TimeDistributed(tf.keras.layers.Conv2D(64,kernel_size=3, strides=1,activation='relu')))model.add(tf.keras.layers.ConvLSTM2D(512, kernel_size=(3,3), padding='same', return_sequences=False))model.add(tf.keras.layers.TimeDistributed(tf.keras.layers.Dense(4, activation='relu')))model.compile(loss='mse', optimizer=tf.keras.optimizers.Adam(lr=0.0001))model.summary()

编译返回:

Model: "sequential_4"_________________________________________________________________Layer (type)                 Output Shape              Param #   =================================================================time_distributed_12 (TimeDis (None, None, 20, 20, 32)  2080      _________________________________________________________________time_distributed_13 (TimeDis (None, None, 9, 9, 64)    32832     _________________________________________________________________time_distributed_14 (TimeDis (None, None, 7, 7, 64)    36928     _________________________________________________________________conv_lst_m2d_3 (ConvLSTM2D)  (None, 7, 7, 512)         10618880  _________________________________________________________________time_distributed_15 (TimeDis (None, 7, 7, 4)           2052      =================================================================Total params: 10,692,772Trainable params: 10,692,772Non-trainable params: 0_________________________________________________________________

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注