标题: 高斯混合模型抛出错误: ‘(slice(None, None, None), 0)’ 是一个无效的键

我想找出一种方法来只绘制前10个’重要性’。我如何才能只筛选出前10个呢?

我正在测试这段代码。

# 导入matplotlib用于绘图,并使用Jupyter Notebooks的魔法命令
import matplotlib.pyplot as plt
# %matplotlib inline
# 设置样式
plt.style.use('fivethirtyeight')
# 用于绘图的x位置列表
x_values = list(range(len(importances)))
# 制作条形图
plt.bar(x_values, importances, orientation = 'vertical')
# x轴的刻度标签
plt.xticks(x_values, feature_list, rotation='vertical')
# 轴标签和标题
plt.ylabel('重要性'); plt.xlabel('变量'); plt.title('变量重要性')

例如,我以为这样会起作用:

importances.nlargest(10)

当然,这没有起作用。

无论如何,如果我打印’importances’,我得到的是这样的结果。

[0.014491770647044457, 0.00019361234623574235, 3.1654130115528675e-05, 2.2282968409838985e-09, 3.2692807408152015e-09, 4.384096695290309e-10, 0.00042439694271008773, 5.237777494120531e-07, 0.001811981822169592, 8.763153025774294e-05, 0.0006285414711295239, 0.0019943872516235126, 0.008064958626964689, 1.5713284855142127e-09, 3.4880330238871455e-07, 9.569576607849658e-08, 4.905092782324521e-07, 3.04975913750217e-08, 0.0007710174613522453, 0.010110214591790158, 2.218810309666371e-06, 0.06635437174813848, 7.094141851738553e-09, 0.09692579151784199, 6.266476641239394e-07, 0.0005677407074106191, 4.33439485665928e-09, 6.729704013292786e-09, 5.448251307127653e-09, 0.07222976995890511, 4.177476454941959e-09, 0.06379521041327217, 4.143632970341204e-08, 0.0, 0.0, 1.6852849006394362e-07, 3.444763728488421e-05, 0.00027783757981549023, 0.00026552081342128665, 0.0027951966216271645, 1.756238666420933e-08, 5.36418731927759e-07, 1.8587336907357295e-08, 1.724316065593696e-06, 4.8075445998997775e-09, 5.0946253981707984e-09, 2.4109672351066337e-09, 6.122816335970093e-07, 2.98653718456776e-08, 1.440685077013712e-08, 3.4814858022082307e-07, 4.9143061686861475e-09, 5.560563276141058e-09, 2.100160313340503e-07, 1.858585731919769e-07, 2.9302956455099447e-10, 1.0676724849696455e-07, 9.205202160096533e-08, 3.238590336881132e-09, 2.9359031523272006e-09, 3.7106613254445946e-08, 0.0, 7.50949849787628e-09, 4.31454496750231e-07, 2.864722788138877e-09, 0.00029555925564843296, 0.018288095727344335, 2.3235414188992915e-05, 1.4724817163996177e-06, 1.83332179664834e-10, 6.5835933557009485e-09, 3.4995919613648777e-08, 1.5791218246276666e-09, 8.543955452925974e-10, 0.0020876600982017773, 1.3271736183875074e-06, 7.097092415371366e-09, 1.1362350498921358e-06, 2.596444953750965e-07, 3.136898750550819e-06, 0.006061284819096849, 1.5073623701901606e-08, 0.0, 3.310508863330544e-10, 4.012406143727027e-07, 3.88598894478961e-10, 7.25246298208171e-09, 2.8319415813159036e-07, 2.7331184262991413e-08, 3.833752596597012e-09, 8.11433296197117e-09, 4.724264918239267e-09, 2.8950794365442764e-10, 3.507963799042248e-09, 1.5810463846782645e-06, 3.1443812975880694e-08, 2.2369371106304586e-08, 5.175362771499234e-10, 1.2536062933757747e-07, 1.7255185496828274e-08, 3.530020584895972e-10, 0.0, 6.824913713173602e-06, 6.614160172490679e-09, 5.8441361773804216e-09, 3.107053566891105e-08, 1.1887553210153202e-08, 1.2147831771421017e-07, 3.847667195219461e-07, 2.0541139213845712e-07, 6.367649972302635e-09, 0.0, 8.713550587152909e-09, 3.348791245078586e-09, 1.249743894834997e-07, 5.024591836321825e-09, 1.1549722525405656e-08, 1.5720375103778552e-09, 1.2061111951654133e-08, 2.204145040115562e-08, 2.6538371008326488e-08, 0.006065658473388039, 1.1261253606401625e-06, 5.3923623114030854e-08, 2.7369694426362433e-08, 2.2715623613698112e-09, 3.267124083622971e-10, 1.3555578552793559e-07, 0.22123522867842335, 1.6121802470302185e-07, 1.0320822141246487e-07, 0.0, 0.00035559600865403307, 5.69666004152515e-09, 8.823972002649428e-09, 1.2623398120425045e-09, 0.1203515135510421, 9.257687093715026e-09, 0.07956702616209582, 6.049395726141352e-08, 0.13345147135296895, 0.06792857593399991, 4.0075569777901097e-07, 0.0003016270514924225, 0.000212157530509232, 4.872071522305804e-07, 0.0018899382796283444, 1.8345580575407573e-08]

这个概念来自于这个链接。

https://towardsdatascience.com/random-forest-in-python-24d0893d51c0


回答:

试试这个:

sorted(importances,reverse=True)[:10]

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注