防止RandomizedSearchCV在KNN分类器上预测出所有同一类别

我正在使用RandomizedSearchCV和KNeighborsClassifier尝试预测贷款违约情况。

理论上使用RandomizedSearchCV似乎很不错,但在实际测试中,它找到的最佳best_estimator_总是预测出所有相同的标签。

(数据集的分割是75%已还清,25%违约),所以我得到了75%的准确率,但它只是预测所有已还清。

n_neighbors = [int(x) for x in np.linspace(start = 1, stop = len(X_train)/3, num = 5)]weights = ['uniform', 'distance']algorithm  = ["auto","ball_tree","kd_tree","brute"]leaf_size  = [int(x) for x in np.linspace(10, 100, num = 5)]p  = [1,2]       random_grid = {'n_neighbors': n_neighbors,               'weights': weights,               'algorithm': algorithm,               'leaf_size': leaf_size,               'p': p}knn_clf = KNeighborsClassifier()knn_random = RandomizedSearchCV(estimator = knn_clf, param_distributions = random_grid, n_iter = 25, cv = 3, verbose=1,)knn_random.fit(X_train, y_train)

有什么方法可以解决这个问题吗?有没有可以传递的参数来阻止这种情况发生?或者我可以对数据做些什么吗?

y_test:

38        PAIDOFF189       PAIDOFF140       PAIDOFF286    COLLECTION142       PAIDOFF101       PAIDOFF187       PAIDOFF139       PAIDOFF149       PAIDOFF11        PAIDOFF269    COLLECTION231       PAIDOFF258       PAIDOFF84        PAIDOFF242       PAIDOFF344    COLLECTION104       PAIDOFF214       PAIDOFF109       PAIDOFF76        PAIDOFF41        PAIDOFF262    COLLECTION125       PAIDOFF107       PAIDOFF27        PAIDOFF14        PAIDOFF92        PAIDOFF194       PAIDOFF113       PAIDOFF333    COLLECTION          ...    320    COLLECTION15        PAIDOFF72        PAIDOFF122       PAIDOFF243       PAIDOFF184       PAIDOFF294    COLLECTION280    COLLECTION218       PAIDOFF197       PAIDOFF133       PAIDOFF143       PAIDOFF179       PAIDOFF249       PAIDOFF80        PAIDOFF331    COLLECTION137       PAIDOFF103       PAIDOFF120       PAIDOFF248       PAIDOFF5         PAIDOFF236       PAIDOFF219       PAIDOFF322    COLLECTION283    COLLECTION135       PAIDOFF124       PAIDOFF293    COLLECTION166       PAIDOFF85        PAIDOFF

预测结果:

array(['PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF',       'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF',       'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF',       'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF',       'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF',       'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF',       'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF',       'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF',       'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF',       'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF',       'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF',       'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF',       'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF',       'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF',       'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF',       'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF',       'PAIDOFF', 'PAIDOFF'], dtype=object)

回答:

这是经典的类别不平衡问题。你可以尝试的一些简单方法是增加少数类别的样本(上采样)或减少多数类别的样本(下采样),然后再试一次。更好的方法是改变你的算法,使用支持向量机(SVC)或神经网络,这些算法可以对少数类别的损失进行加权处理。

例如,sklearn中的sklearn.svm.SVC有一个class_weights = 'balanced'参数,可以帮助解决这个问题。它会根据输入数据中各类别的比例,自动调整少数类别的权重。

“balanced”模式会根据输入数据中各类别的频率自动调整权重,使其与类别频率成反比。

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注