我一直在尝试使用决策树算法创建的模型,从一个DataFrame中进行预测。
我已经得到了模型的分数,为0.96。接着,我尝试使用模型对留下来的人的DataFrame进行预测,但遇到了错误。目标是根据留下来的人的DataFrame预测未来会离开公司的人。
如何实现这个目标?
所以我所做的步骤如下:
- 从我的GitHub读取DataFrame,并将其分为已离开和未离开的人
df = pd.read_csv('https://raw.githubusercontent.com/bhaskoro-muthohar/DataScienceLearning/master/HR_comma_sep.csv')leftdf = df[df['left']==1]notleftdf =df[df['left']==0]
- 准备数据以生成模型
df.salary = df.salary.map({'low':0,'medium':1,'high':2})df.salary
X = df.drop(['left','sales'],axis=1)y = df['left']
- 划分训练集和测试集
import numpy as npfrom sklearn.model_selection import train_test_split#划分训练集和测试集X_train, X_test, y_train, y_test= train_test_split(X,y,random_state=0, stratify=y)
- 训练模型
from sklearn import treeclftree = tree.DecisionTreeClassifier(max_depth=3)clftree.fit(X_train,y_train)
- 评估模型
y_pred = clftree.predict(X_test)print("Test set prediction:\n {}".format(y_pred))print("Test set score: {:.2f}".format(clftree.score(X_test, y_test)))
结果是
Test set score: 0.96
- 然后我尝试使用未离开公司的人的DataFrame进行预测
X_new = notleftdf.drop(['left','sales'],axis=1)#将薪水映射到0,1,2X_new.salary = X_new.salary.map({'low':0,'medium':1,'high':2})X_new.salary
prediction_will_left = clftree.predict(X_new)print("Prediction: {}".format(prediction_will_left))print("Predicted target name: {}".format( notleftdf['left'][prediction_will_left]))
我遇到的错误是:
KeyError: "None of [Int64Index([0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n ...\n 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],\n dtype='int64', length=11428)] are in the [index]"
如何解决这个问题?
PS: 完整脚本的链接在这里
回答:
也许你正在寻找这样的东西。(一旦你将数据文件下载到同一目录下,这是一个自包含的脚本。)
from sklearn import treefrom sklearn.model_selection import train_test_splitimport numpy as npimport pandas as pddef process_df_for_ml(df): """ 处理DataFrame以供模型训练/预测使用。 返回X/y张量。 """ df = df.copy() # 将薪水映射到0,1,2 df.salary = df.salary.map({"low": 0, "medium": 1, "high": 2}) # 丢弃left和sales列,X为DataFrame,y为left X = df.drop(["left", "sales"], axis=1) y = df["left"] return (X, y)# 读取并重新索引CSV文件。df = pd.read_csv("HR_comma_sep.csv")df = df.reindex()# 训练决策树。X, y = process_df_for_ml(df)X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0, stratify=y)clftree = tree.DecisionTreeClassifier(max_depth=3)clftree.fit(X_train, y_train)# 在尚未离开的人身上测试决策树。notleftdf = df[df["left"] == 0].copy()X, y = process_df_for_ml(notleftdf)# 添加一个新列,包含预测的零和一。notleftdf["will_leave"] = clftree.predict(X)# 打印出标记为将要离开的人。print(notleftdf[notleftdf["will_leave"] == 1])