我刚开始学习CNN和机器学习,正在尝试按照TensorFlow的图像分类教程进行学习。
现在,Google Colab的链接在这里可以找到这里。我已经按照TensorFlow的官方教程进行操作,并稍作修改,将模型保存为h5
格式而不是tf
格式,这样我就可以使用Keras的model.predict_classes
方法。
现在,我已经训练了模型,并从保存的模型中重新加载了模型。但是,每当我尝试预测图像时,我总是会得到list index out of range
错误,我是这样做的:
def predict(): image = tf.io.read_file('target.jpeg') image = tf.image.decode_jpeg(image, channels=3) image = tf.image.resize(image, [224, 224]) print(model.predict_classes(image)[0])
target.jpeg
是我从flowers_photos
数据集中取出的一张图片,该模型就是在这个数据集上训练的。
错误的回溯信息如下:
Traceback (most recent call last): File "<stdin>", line 1, in <module> File "<stdin>", line 7, in predict File "/home/amitjoki/.local/lib/python3.6/site-packages/tensorflow/python/keras/engine/sequential.py", line 319, in predict_classes proba = self.predict(x, batch_size=batch_size, verbose=verbose) File "/home/amitjoki/.local/lib/python3.6/site-packages/tensorflow/python/keras/engine/training.py", line 821, in predict use_multiprocessing=use_multiprocessing) File "/home/amitjoki/.local/lib/python3.6/site-packages/tensorflow/python/keras/engine/training_arrays.py", line 712, in predict callbacks=callbacks) File "/home/amitjoki/.local/lib/python3.6/site-packages/tensorflow/python/keras/engine/training_arrays.py", line 187, in model_iteration f = _make_execution_function(model, mode) File "/home/amitjoki/.local/lib/python3.6/site-packages/tensorflow/python/keras/engine/training_arrays.py", line 555, in _make_execution_function return model._make_execution_function(mode) File "/home/amitjoki/.local/lib/python3.6/site-packages/tensorflow/python/keras/engine/training.py", line 2037, in _make_execution_function self._make_predict_function() File "/home/amitjoki/.local/lib/python3.6/site-packages/tensorflow/python/keras/engine/training.py", line 2027, in _make_predict_function **kwargs) File "/home/amitjoki/.local/lib/python3.6/site-packages/tensorflow/python/keras/backend.py", line 3544, in function return EagerExecutionFunction(inputs, outputs, updates=updates, name=name) File "/home/amitjoki/.local/lib/python3.6/site-packages/tensorflow/python/keras/backend.py", line 3468, in __init__ self.outputs[0] = array_ops.identity(self.outputs[0])IndexError: list index out of range
我广泛搜索了但没有找到任何解决方案。如果有人能指导我如何解决这个问题,我将不胜感激。
回答:
Keras中的所有预测函数都期望输入一个批次。因此,由于您是在单张图像上进行预测,您需要在图像张量的开头添加一个轴来表示批次轴:
image = tf.expand_dims(image, axis=0) # 形状将变为(1, 224, 224, 3)print(model.predict_classes(image)[0])