sklearn.compose.ColumnTransformer: fit_transform() 接受2个位置参数,但提供了3个

我正在处理一个使用 ColumnTransformerLabelEncoder 对著名的泰坦尼克数据集 X 进行预处理的示例:

    Age Embarked    Fare    Sex0   22.0    S      7.2500   male1   38.0    C      71.2833  female2   26.0    S      7.9250   female3   35.0    S      53.1000  female4   35.0    S      8.0500   male

像这样调用转换器:

from sklearn.compose import ColumnTransformerfrom sklearn.preprocessing import LabelEncoderColumnTransformer(    transformers=[        ("label-encode categorical", LabelEncoder(), ["Sex", "Embarked"])    ]).fit(X).transform(X)

结果是:

---------------------------------------------------------------------------TypeError                                 Traceback (most recent call last)<ipython-input-54-fd5a05b7e47e> in <module>      4         ("label-encode categorical", LabelEncoder(), ["Sex", "Embarked"])      5     ]----> 6 ).fit(X).transform(X)~/anaconda3/lib/python3.7/site-packages/sklearn/compose/_column_transformer.py in fit(self, X, y)    418         # we use fit_transform to make sure to set sparse_output_ (for which we    419         # need the transformed data) to have consistent output type in predict--> 420         self.fit_transform(X, y=y)    421         return self    422 ~/anaconda3/lib/python3.7/site-packages/sklearn/compose/_column_transformer.py in fit_transform(self, X, y)    447         self._validate_remainder(X)    448 --> 449         result = self._fit_transform(X, y, _fit_transform_one)    450     451         if not result:~/anaconda3/lib/python3.7/site-packages/sklearn/compose/_column_transformer.py in _fit_transform(self, X, y, func, fitted)    391                               _get_column(X, column), y, weight)    392                 for _, trans, column, weight in self._iter(--> 393                     fitted=fitted, replace_strings=True))    394         except ValueError as e:    395             if "Expected 2D array, got 1D array instead" in str(e):~/anaconda3/lib/python3.7/site-packages/sklearn/externals/joblib/parallel.py in __call__(self, iterable)    915             # remaining jobs.    916             self._iterating = False--> 917             if self.dispatch_one_batch(iterator):    918                 self._iterating = self._original_iterator is not None    919 ~/anaconda3/lib/python3.7/site-packages/sklearn/externals/joblib/parallel.py in dispatch_one_batch(self, iterator)    757                 return False    758             else:--> 759                 self._dispatch(tasks)    760                 return True    761 ~/anaconda3/lib/python3.7/site-packages/sklearn/externals/joblib/parallel.py in _dispatch(self, batch)    714         with self._lock:    715             job_idx = len(self._jobs)--> 716             job = self._backend.apply_async(batch, callback=cb)    717             # A job can complete so quickly than its callback is    718             # called before we get here, causing self._jobs to~/anaconda3/lib/python3.7/site-packages/sklearn/externals/joblib/_parallel_backends.py in apply_async(self, func, callback)    180     def apply_async(self, func, callback=None):    181         """Schedule a func to be run"""--> 182         result = ImmediateResult(func)    183         if callback:    184             callback(result)~/anaconda3/lib/python3.7/site-packages/sklearn/externals/joblib/_parallel_backends.py in __init__(self, batch)    547         # Don't delay the application, to avoid keeping the input    548         # arguments in memory--> 549         self.results = batch()    550     551     def get(self):~/anaconda3/lib/python3.7/site-packages/sklearn/externals/joblib/parallel.py in __call__(self)    223         with parallel_backend(self._backend, n_jobs=self._n_jobs):    224             return [func(*args, **kwargs)--> 225                     for func, args, kwargs in self.items]    226     227     def __len__(self):~/anaconda3/lib/python3.7/site-packages/sklearn/externals/joblib/parallel.py in <listcomp>(.0)    223         with parallel_backend(self._backend, n_jobs=self._n_jobs):    224             return [func(*args, **kwargs)--> 225                     for func, args, kwargs in self.items]    226     227     def __len__(self):~/anaconda3/lib/python3.7/site-packages/sklearn/pipeline.py in _fit_transform_one(transformer, X, y, weight, **fit_params)    612 def _fit_transform_one(transformer, X, y, weight, **fit_params):    613     if hasattr(transformer, 'fit_transform'):--> 614         res = transformer.fit_transform(X, y, **fit_params)    615     else:    616         res = transformer.fit(X, y, **fit_params).transform(X)TypeError: fit_transform() takes 2 positional arguments but 3 were given

**fit_params 这里的问题是什么?对我来说这看起来像是 sklearn 的一个错误,或者至少是不兼容的情况。


回答:

有两个主要原因导致这个方法无法用于您的目的。

  1. LabelEncoder() 设计用于目标变量(y)。这就是当 columnTransformer() 尝试传入 X, y=None, fit_params={} 时会引发位置参数错误的原因。

来自 文档

使用0到n_classes-1之间的值编码标签。

fit(y)
拟合标签编码器

参数:
y : 形状为 (n_samples,) 的数组类型
目标值。

  1. 即使您找到一个解决方案来移除空字典,LabelEncoder() 也无法处理二维数组(基本上是多个特征),因为它只能处理一维的 y 值。

简短回答 – 我们不应该使用 LabelEncoder() 来处理输入特征。

那么,如何对输入特征进行编码呢?

如果您的特征是序数特征,请使用 OrdinalEncoder(),如果是名义特征,则使用 OneHotEncoder()

示例:

>>> from sklearn.compose import ColumnTransformer>>> from sklearn.preprocessing import OrdinalEncoder, OneHotEncoder>>> X = np.array([[1000., 100., 'apple', 'green'],...               [1100., 100., 'orange', 'blue']])>>> ct = ColumnTransformer(...     [("ordinal", OrdinalEncoder(), [0, 1]),         ("nominal", OneHotEncoder(), [2, 3])])>>> ct.fit_transform(X)   array([[0., 0., 1., 0., 0., 1.],       [1., 0., 0., 1., 1., 0.]]) 

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注