我试图将一个关于房价的Keras教程改编用于评估棋盘游戏的位置。然而,问题在于棋盘游戏的位置是二维的,这让Keras报错。
以下是一些基于教程的代码,用于处理从线性方程生成的虚拟数据。
import numpy as npfrom keras.models import Sequentialfrom keras.layers import Densefrom keras.wrappers.scikit_learn import KerasRegressorfrom sklearn.model_selection import cross_val_scorefrom sklearn.model_selection import KFold# fix random seed for reproducibilityseed = 1np.random.seed(seed)# Generate dataset with linear outputs.sample_count = 1000column_count = 5X = np.random.uniform(size=sample_count * column_count)X.shape = (sample_count, column_count)Y = 2*X[:, 0] + X[:, 1] + X[:, 2] + 11*X[:, 3] + 3*X[:, 4]# define base modeldef baseline_model(): # create model model = Sequential() model.add(Dense(column_count * 2, input_dim=column_count, kernel_initializer='normal', activation='relu')) model.add(Dense(1, kernel_initializer='normal')) # Compile model model.compile(loss='mean_squared_error', optimizer='adam') return model# evaluate model with standardized datasetestimator = KerasRegressor(build_fn=baseline_model, epochs=100, batch_size=5, verbose=0)kfold = KFold(n_splits=10, random_state=seed)results = cross_val_score(estimator, X, Y, cv=kfold)print("Results: %.2f (%.2f) MSE" % (results.mean(), results.std()))estimator.fit(X, Y)test_samples = np.identity(column_count)predictions = estimator.predict(test_samples)print(predictions)
这些代码运行得很好,但在尝试使用等效的二维数据时就出现了问题。以下是二维数据的代码:
当我运行这段代码时,得到以下错误:
Traceback (most recent call last): File "/home/don/PycharmProjects/ml_tutorial/ml_tutorial/run_linear2.py", line 40, in <module> results = cross_val_score(estimator, X, Y, cv=kfold) File "/home/don/.local/share/virtualenvs/ml_tutorial-3a_885qf/lib/python3.6/site-packages/sklearn/model_selection/_validation.py", line 402, in cross_val_score error_score=error_score) File "/home/don/.local/share/virtualenvs/ml_tutorial-3a_885qf/lib/python3.6/site-packages/sklearn/model_selection/_validation.py", line 240, in cross_validate for train, test in cv.split(X, y, groups)) File "/home/don/.local/share/virtualenvs/ml_tutorial-3a_885qf/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py", line 917, in __call__ if self.dispatch_one_batch(iterator): File "/home/don/.local/share/virtualenvs/ml_tutorial-3a_885qf/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py", line 759, in dispatch_one_batch self._dispatch(tasks) File "/home/don/.local/share/virtualenvs/ml_tutorial-3a_885qf/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py", line 716, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "/home/don/.local/share/virtualenvs/ml_tutorial-3a_885qf/lib/python3.6/site-packages/sklearn/externals/joblib/_parallel_backends.py", line 182, in apply_async result = ImmediateResult(func) File "/home/don/.local/share/virtualenvs/ml_tutorial-3a_885qf/lib/python3.6/site-packages/sklearn/externals/joblib/_parallel_backends.py", line 549, in __init__ self.results = batch() File "/home/don/.local/share/virtualenvs/ml_tutorial-3a_885qf/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py", line 225, in __call__ for func, args, kwargs in self.items] File "/home/don/.local/share/virtualenvs/ml_tutorial-3a_885qf/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py", line 225, in <listcomp> for func, args, kwargs in self.items] File "/home/don/.local/share/virtualenvs/ml_tutorial-3a_885qf/lib/python3.6/site-packages/sklearn/model_selection/_validation.py", line 528, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "/home/don/.local/share/virtualenvs/ml_tutorial-3a_885qf/lib/python3.6/site-packages/keras/wrappers/scikit_learn.py", line 152, in fit history = self.model.fit(x, y, **fit_args) File "/home/don/.local/share/virtualenvs/ml_tutorial-3a_885qf/lib/python3.6/site-packages/keras/engine/training.py", line 952, in fit batch_size=batch_size) File "/home/don/.local/share/virtualenvs/ml_tutorial-3a_885qf/lib/python3.6/site-packages/keras/engine/training.py", line 789, in _standardize_user_data exception_prefix='target') File "/home/don/.local/share/virtualenvs/ml_tutorial-3a_885qf/lib/python3.6/site-packages/keras/engine/training_utils.py", line 128, in standardize_input_data 'with shape ' + str(data_shape))ValueError: Error when checking target: expected dense_2 to have 3 dimensions, but got array with shape (900, 1)
我该如何说服模型接受二维输入呢?
回答:
根据一个类似的讨论在GitHub问题中,你可以简单地添加一个Flatten()
层来降低输入维度。
我想我可能还需要使用其他层,比如Conv2D
,来真正利用二维关系,但这已经让我避免了错误。