完整的replit在这里:https://repl.it/@JacksonEnnis/KNNPercentage
我正在尝试使用sci-kit learn中的KNN工具进行一些预测。
我有两个函数,recurse()和predict()。recurse()旨在遍历所有可能的特征组合,而predict()则负责实际的
def predict(self, data, answers): from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import train_test_split as tts import numpy as np if len(data) > 1: print("转置前的长度 {}".format(len(data))) #n_data = np.transpose(data) #print("转置后的长度 {}".format(len(n_data))) knn = KNeighborsClassifier(n_neighbors=1) xTrain, xTest, yTrain, yTest = tts(data, answers) print("xTrain数据: {}".format(len(xTrain))) knn.fit(xTrain, yTrain) print(knn.score(xTest, yTest)) def recurse(self, data): self.predict(data, self.y) if len(data) > 0: self.recurse(self.rLeft(data)) if len(data) > 1: self.recurse(self.rMid(data)) if len(data) > 2: self.recurse(self.rRight(data))
然而,当我运行程序时,它指出在训练/测试行上出现了问题。我检查了每个特征中的样本以及答案,发现它们长度都相同,所以我不知道为什么会发生这种情况。
Traceback (most recent call last): File "main.py", line 12, in <module> best = Config(apple) File "/home/runner/Config.py", line 13, in __init__ self.predict(self.features, self.y) File "/home/runner/Config.py", line 45, in predict xTrain, xTest, yTrain, yTest = tts(data, answers) File "/home/runner/.local/lib/python3.6/site-packages/sklearn/model_selection/_split.py", line 2096, in train_test_split arrays = indexable(*arrays) File "/home/runner/.local/lib/python3.6/site-packages/sklearn/utils/validation.py", line 230, in indexable check_consistent_length(*result) File "/home/runner/.local/lib/python3.6/site-packages/sklearn/utils/validation.py", line 205, in check_consistent_length " samples: %r" % [int(l) for l in lengths])ValueError: 发现输入变量的样本数量不一致:[20, 499]
回答:
你的轴向反了。对于你的每个数组,array.shape[0]
必须是相同的大小。我建议你查看scikit文档以获取更多示例。
tts(np.array(data).T, answers)