我在使用scikit-learn库运行一个随机森林模型时,使用mean absolute
评估其准确性时得到了一个ValueError:
“发现输入变量的样本数量不一致。”
我使用的pandas数据框来自一个房地产csv文件,在添加了一些缺失值后进行了修改。请查看下面的代码。
X_train, X_valid, y_train, y_valid = train_test_split(X, y, train_size=0.8, test_size=0.2, random_state=0)X_train_plus = X_train.copy()X_valid_plus = X_train.copy()for col in cols_with_missing: X_train_plus[col + "_was_missing"] = X_train_plus[col].isnull() X_valid_plus[col + "_was_missing"] = X_valid_plus[col].isnull()my_imputer = SimpleImputer()imp_X_train_plus = pd.DataFrame(my_imputer.fit_transform(X_train_plus))imp_X_valid_plus = pd.DataFrame(my_imputer.fit_transform(X_valid_plus))imp_X_train_plus.columns = X_train_plus.columnsimp_X_valid_plus.columns = X_valid_plus.columnsmodel_1 = RandomForestRegressor(n_estimators=50, random_state=0)model_2 = RandomForestRegressor(n_estimators=100, random_state=0)model_3 = RandomForestRegressor(n_estimators=100, criterion="mae", random_state=0)model_4 = RandomForestRegressor(n_estimators=100, min_samples_split=20, random_state=0)model_5 = RandomForestRegressor(n_estimators=100, max_depth=7, random_state=0)models = [model_1, model_2, model_3, model_4, model_5]def score_model (model, imp_X_train_plus, y_train, imp_X_valid_plus, y_valid): model.fit(imp_X_train_plus, y_train) pred = model.predict(imp_X_valid_plus) return mean_absolute_error(y_valid, pred)for i in range(0, len(models)): mae = score_model (models[i], imp_X_train_plus, y_train, imp_X_valid_plus, y_valid) print("Model %d with extended imputed has a MAE: %d" %(i+1, mae))
我期望的输出类似于以下内容:
“Model 1 with extended imputed has a MAE: 345237”
但实际上,当在score_model函数中调用mean_absolute_error时,我得到了以下ValueError:
“ValueError: 发现输入变量的样本数量不一致: [2716, 10864]”
我认为错误可能出在imp_X_train_plus和imp_X_valid_plus变量上,然而我之前运行了一个非常相似的模型,使用这些数据框时运行正常。
回答:
问题可能出在第三行代码:X_valid_plus = X_train.copy()
。
你是否想这样写:X_valid_plus = X_valid.copy()
?