如何为线性回归定义目标变量

我想对一个尺寸为96×100的数据集进行回归分析。列表示天数(100天)的数值,而独立变量是时间。我的目标变量是多列的情况下,如何进行线性回归?样本数据集如下:

time    day1    day2    day3    day4    day5    day6    day7    day8    day9    day10   day11   day12   day13   day14   day15   day16   day17   day18   day19   day20   day21   day22   day23   day24   day25   day26   day27   day28   day29   day30   day31   day32   day33   day34   day35   day36   day37   day38   day39   day40   day41   day42   day43   day44   day45   day46   day47   day48   day49   day50   day51   day52   day53   day54   day55   day56   day57   day58   day59   day60   day61   day62   day63   day64   day65   day66   day57   day68   day69   day70   day71   day72   day73   day74   day75   day76   day77   day78   day79   day80   day81   day82   day83   day84   day85   day86   day87   day88   day89   day90   day91   day92   day93   day94   day95   day96   day97   day98   day99   day100500 6.07588E-10 6.13664E-10 5.89361E-10 5.95437E-10 6.31892E-10 6.37968E-10 5.83285E-10 6.01512E-10 5.83285E-10 6.1974E-10  3.03794E-09 -6.07588E-10    -2.43035E-09    1.21518E-09 2.43035E-09 6.07588E-10 6.07588E-10 -1.21518E-09    -1.21518E-09    0   3.03794E-09 1.82276E-09 -1.82276E-09    1.82276E-09 -2.43035E-09    -1.21518E-09    -1.21518E-09    -1.82276E-09    -1.21518E-09    2.43035E-09 1.82276E-09 -2.43035E-09    1.21518E-09 -6.07588E-10    -1.21518E-09    0   -1.21518E-09    1.21518E-09 -2.43035E-09    -2.43035E-09    3.03794E-09 -1.82276E-09    6.07588E-10 -1.82276E-09    3.03794E-09 -2.43035E-09    1.82276E-09 -1.82276E-09    0   0   1.82276E-09 -3.03794E-09    0   3.03794E-09 -1.21518E-09    -1.21518E-09    0   3.03794E-09 1.21518E-09 6.07588E-10 -3.03794E-09    1.21518E-09 3.03794E-09 0   6.07588E-10 -6.07588E-10    -6.07588E-10    1.82276E-09 -3.03794E-09    -1.21518E-09    1.21518E-09 1.82276E-09 1.82276E-09 2.43035E-09 3.03794E-09 1.21518E-09 1.21518E-09 -2.43035E-09    3.03794E-09 0   -1.21518E-09    -1.82276E-09    -1.82276E-09    1.82276E-09 -3.03794E-09    1.82276E-09 0   2.43035E-09 3.03794E-09 -2.43035E-09    -1.21518E-09    6.07588E-10 -1.21518E-09    6.07588E-10 3.03794E-09 0   -2.43035E-09    -1.21518E-09    -1.82276E-09    0515 6.07588E-10 5.89361E-10 6.07588E-10 6.01512E-10 6.25816E-10 6.07588E-10 6.1974E-10  6.37968E-10 5.77209E-10 5.95437E-10 1.82276E-09 -3.03794E-09    0   2.43035E-09 1.21518E-09 -3.03794E-09    -3.03794E-09    -1.82276E-09    2.43035E-09 0   1.82276E-09 3.03794E-09 2.43035E-09 6.07588E-10 1.21518E-09 -2.43035E-09    -6.07588E-10    -1.82276E-09    -1.21518E-09    -2.43035E-09    1.82276E-09 -1.21518E-09    6.07588E-10 6.07588E-10 0   6.07588E-10 3.03794E-09 -3.03794E-09    -1.21518E-09    -1.82276E-09    0   -3.03794E-09    1.21518E-09 -2.43035E-09    -2.43035E-09    -2.43035E-09    1.82276E-09 -1.82276E-09    6.07588E-10 -3.03794E-09    -6.07588E-10    -1.21518E-09    3.03794E-09 -1.82276E-09    -6.07588E-10    -1.21518E-09    1.82276E-09 3.03794E-09 -1.21518E-09    -6.07588E-10    -1.82276E-09    -2.43035E-09    -1.21518E-09    1.82276E-09 3.03794E-09 1.21518E-09 6.07588E-10 -1.82276E-09    2.43035E-09 -3.03794E-09    0   -2.43035E-09    -1.82276E-09    -3.03794E-09    3.03794E-09 3.03794E-09 3.03794E-09 -6.07588E-10    -6.07588E-10    -6.07588E-10    -2.43035E-09    -2.43035E-09    -1.82276E-09    -3.03794E-09    -1.21518E-09    -6.07588E-10    6.07588E-10 -3.03794E-09    -1.82276E-09    6.07588E-10 2.43035E-09 1.82276E-09 1.21518E-09 0   0   1.21518E-09 3.03794E-09 2.43035E-09 6.07588E-10 3.03794E-09530 6.07588E-10 6.01512E-10 6.1974E-10  6.13664E-10 5.95437E-10 6.31892E-10 6.01512E-10 5.77209E-10 6.13664E-10 6.25816E-10 1.82276E-09 2.43035E-09 1.82276E-09 -1.21518E-09    1.82276E-09 2.43035E-09 3.03794E-09 3.03794E-09 2.43035E-09 6.07588E-10 6.07588E-10 -6.07588E-10    2.43035E-09 0   1.82276E-09 6.07588E-10 0   3.03794E-09 -1.82276E-09    3.03794E-09 0   1.82276E-09 1.21518E-09 -2.43035E-09    -2.43035E-09    -3.03794E-09    1.21518E-09 -6.07588E-10    -1.82276E-09    2.43035E-09 3.03794E-09 -1.21518E-09    -6.07588E-10    6.07588E-10 2.43035E-09 0   -6.07588E-10    3.03794E-09 3.03794E-09 -1.82276E-09    3.03794E-09 1.82276E-09 6.07588E-10 0   -2.43035E-09    -3.03794E-09    -6.07588E-10    -2.43035E-09    -3.03794E-09    -1.21518E-09    1.82276E-09 6.07588E-10 3.03794E-09 6.07588E-10 0   3.03794E-09 2.43035E-09 0   -3.03794E-09    -3.03794E-09    1.21518E-09 -1.82276E-09    -3.03794E-09    0   -6.07588E-10    3.03794E-09 6.07588E-10 -2.43035E-09    -1.21518E-09    -2.43035E-09    -3.03794E-09    0   1.21518E-09 3.03794E-09 2.43035E-09 -1.82276E-09    -6.07588E-10    1.82276E-09 -2.43035E-09    1.21518E-09 1.21518E-09 -6.07588E-10    1.21518E-09 -3.03794E-09    -6.07588E-10    -2.43035E-09    -1.82276E-09    3.03794E-09 -2.43035E-09    3.03794E-09545 6.07588E-10 6.25816E-10 6.07588E-10 6.13664E-10 6.07588E-10 6.01512E-10 5.95437E-10 6.07588E-10 5.95437E-10 6.01512E-10 3.03794E-09 1.21518E-09 -1.82276E-09    -3.03794E-09    3.03794E-09 1.82276E-09 1.21518E-09 6.07588E-10 6.07588E-10 -1.82276E-09    -1.21518E-09    3.03794E-09 1.82276E-09 2.43035E-09 1.21518E-09 2.43035E-09 -1.82276E-09    2.43035E-09 -3.03794E-09    1.82276E-09 -2.43035E-09    -6.07588E-10    3.03794E-09 2.43035E-09 1.21518E-09 3.03794E-09 -3.03794E-09    0   -1.82276E-09    2.43035E-09 -1.21518E-09    6.07588E-10 1.82276E-09 1.21518E-09 1.21518E-09 -6.07588E-10    -1.21518E-09    -6.07588E-10    3.03794E-09 1.21518E-09 2.43035E-09 -1.21518E-09    0   1.82276E-09 -1.82276E-09    1.21518E-09 1.21518E-09 3.03794E-09 -6.07588E-10    -1.21518E-09    6.07588E-10 -6.07588E-10    6.07588E-10 1.82276E-09 -6.07588E-10    3.03794E-09 -1.82276E-09    1.21518E-09 -6.07588E-10    1.21518E-09 1.82276E-09 -2.43035E-09    -2.43035E-09    -6.07588E-10    -6.07588E-10    6.07588E-10 6.07588E-10 3.03794E-09 -6.07588E-10    1.21518E-09 -6.07588E-10    2.43035E-09 -2.43035E-09    -2.43035E-09    -2.43035E-09    -1.82276E-09    0   -1.82276E-09    -3.03794E-09    1.21518E-09 3.03794E-09 1.21518E-09 3.03794E-09 -1.21518E-09    -3.03794E-09    -6.07588E-10    -1.21518E-09    1.21518E-09 -2.43035E-09    -6.07588E-10
plt.scatter(reg.predict(X), reg.predict(X) - y,             color = "green", s = 10, label = 'Train data') 

回答:

你可以将时间设为因变量(标签),将不同日期的值设为模型的特征(独立变量)。你可以使用sklearn轻松地进行多层次回归:

from sklearn.linear_model import LinearRegressionX=np.array(df.drop("time",1))y=np.array(df["time"])clf=LinearRegression()clf.fit(X,y)

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注