我进行了最小-最大归一化处理后,样本值的范围在[-1,1]之间。由于这种归一化只是一种重新缩放,那么为什么新数据的均值不为零?我的代码有问题,还是我的解释有问题?
data np.array([-3, 1,2])print("data mean:" , data.mean())#进行最小-最大归一化:old_range = np.amax(data) - np.amin(data)new_range = 2 new_min = -1 data_norm = ((data - np.amin(data)) / old_range)*new_range + new_minprint("data_norm:", data_norm)print("mean after normalization: ", data_norm.mean())#结果:#data mean: 0.0#mean after normalization: 0.60000001
回答:
一般来说,如果x
是一个随机变量,且y = bx+c
,那么(参考)
mean(y) = mean(x)*b + cstd(y) = std(x)*bvariance(y) = variance(x)*b**2
x = np.array([-3, 1,2])new_min = -1new_max = 1new_range = new_max - new_minnew_x = ((x-np.min(x))/(np.max(x)-np.min(x)))*new_range + new_minprint ("Mean: {0:.3}, std: {1:.3}, Var: {2:.3}".format(np.mean(new_x), np.std(new_x), np.var(new_x)))alpha = new_range/(np.max(x)-np.min(x))beta = np.min(x)*alpha - new_minnew_mean = np.mean(x)*alpha - betanew_std = np.std(x)*alphanew_var = np.var(x)*alpha*alphaprint ("Mean: {0:.3}, std: {1:.3}, Var: {2:.3}".format(new_mean,new_std,new_var))
输出:
Mean: 0.2, std: 0.864, Var: 0.747Mean: 0.2, std: 0.864, Var: 0.747
因此,y的均值取决于x
的均值以及上述方程中的alpha和beta。