我有以下神经网络
def customLoss(yTrue,yPred): loss_value = np.divide(abs(yTrue - yPred) , yTrue) loss_value = tf.reduce_mean(loss_value) return loss_valuedef model(inp_size): inp = Input(shape=(inp_size,)) x1 = Dense(100, activation='relu')((inp)) x1 = Dense(50, activation='relu')(x1) x1 = Dense(20, activation='relu')(x1) x1 = Dense(1, activation = 'linear')(x1) x2 = Dense(100, activation='relu')(inp) x2 = Dense(50, activation='relu')(x2) x2 = Dense(20, activation='relu')(x2) x2 = Dense(1, activation = 'linear')(x2) x3 = Dense(100, activation='relu')(inp) x3 = Dense(50, activation='relu')(x3) x3 = Dense(20, activation='relu')(x3) x3 = Dense(1, activation = 'linear')(x3) x4 = Dense(100, activation='relu')(inp) x4 = Dense(50, activation='relu')(x4) x4 = Dense(20, activation='relu')(x4) x4 = Dense(1, activation = 'linear')(x4) x1 = Lambda(lambda x: x * baseline[0])(x1) x2 = Lambda(lambda x: x * baseline[1])(x2) x3 = Lambda(lambda x: x * baseline[2])(x3) x4 = Lambda(lambda x: x * baseline[3])(x4) out = Add()([x1, x2, x3, x4]) return Model(inputs = inp, outputs = out)y_train=y_train.astype('float32')y_test=y_test.astype('float32')NN_model = Sequential()NN_model = model(X_train.shape[1])NN_model.compile(loss=customLoss, optimizer= 'Adamax', metrics= [customLoss])NN_model.fit(X_train, y_train, epochs=500,verbose = 1)train_predictions = NN_model.predict(X_train)predictions = NN_model.predict(X_test)MAE = customLoss (y_test, predictions)
最后的输出是3663/3663 [==============================] – 0s 103us/step – loss: 0.0055 – customLoss: 0.0055
然而,当我打印 customLoss (y_train , train_predictions) 时
我得到 0.06469738
我读到过,训练期间的损失是整个轮次的平均值,但最终结果肯定不应该更差,更不用说相差一个数量级了?我对keras还比较新手,任何建议都欢迎,谢谢!
回答:
事实证明,训练预测的形状是(3000 , 1),而 y_train 是(3000, )train_predictions = NN_model.predict(X_train).flatten()
解决了这个问题